Skip to main content
Log in

Random lasing detection of structural transformation and compositions in silk fibroin scaffolds

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it is extremely difficult to monitor the change of their microstructure and compositions during tissue regeneration. Here, we report how random lasing can be utilized to non-invasively monitor the structure and composition of scaffolds. We hypothesize that morphological and compositional change of silk fibroin (SF) scaffolds can be conveniently detected based on random lasing responses. Engineered SF scaffolds with hydroxyapatite (HAP) nanoparticles and controlled pore alignment were fabricated, and their random lasing responses were analyzed depending on the concentration of HAP nanoparticles and the degree of internal pore alignment. We also examined the real-time random lasing responses of porous SF scaffolds by applying a compressive force to the scaffolds. Introduction of HAP nanoparticles lowered the lasing thresholds and narrowed the random lasing (RL) width dramatically, which is likely due to the increase in heterogeneity in both refractive index and physical arrangement within the SF and HAP composites. The strong dependency of RL response on pore alignment was also measured and validated by numerical calculation with the finite element method (FEM). Finally, real-time monitoring of RL on compressed scaffolds demonstrated the possibility of using RL as a monitoring tool for structural change of SF scaffolds in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y. M.; Chen, X. M.; Ding, F.; Zhang, P. Y.; Liu, J.; Gu, X. S. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652.

    Article  Google Scholar 

  2. Tao, H.; Kaplan, D. L.; Omenetto, F. G. Silk materials-A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.

    Article  Google Scholar 

  3. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H. L.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.

    Article  Google Scholar 

  4. Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.

    Article  Google Scholar 

  5. Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.

    Article  Google Scholar 

  6. Magoshi, J.; Magoshi, Y.; Nakamura, S. Physical properties and structure of silk. VII. Crystallization of amorphous silk fibroin induced by immersion in methanol. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 185–186.

    Google Scholar 

  7. Yang, S. Y.; Hwang, T. H.; Che, L. H.; Oh, J. S.; Ha, Y.; Ryu, W. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed. Mater. 2015, 10, 035011.

    Article  Google Scholar 

  8. Karageorgiou, V.; Meinel, L.; Hofmann, S.; Malhotra, A.; Volloch, V.; Kaplan, D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A 2004, 71, 528–537.

    Article  Google Scholar 

  9. Yan, L. P.; Oliveira, J. M.; Oliveira, A. L.; Caridade, S. G.; Mano, J. F.; Reis, R. L. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012, 8, 289–301.

    Article  Google Scholar 

  10. Li, C. M.; Vepari, C.; Jin, H. J.; Kim, H. J.; Kaplan, D. L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124.

    Article  Google Scholar 

  11. Amsden, J. J.; Domachuk, P.; Gopinath, A.; White, R. D.; Negro, L. D.; Kaplan, D. L.; Omenetto, F. G. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 2010, 22, 1746–1749.

    Article  Google Scholar 

  12. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 2011, 23, 1630–1634.

    Article  Google Scholar 

  13. Applegate, M. B.; Marelli, B.; Kaplan, D. L.; Omenetto, F. G. Determination of multiphoton absorption of silk fibroin using the Z-scan technique. Opt. Express 2013, 21, 29637–29642.

    Article  Google Scholar 

  14. Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415.

    Article  Google Scholar 

  15. Toffanin, S.; Kim, S.; Cavallini, S.; Natali, M.; Benfenati, V.; Amsden, J. J.; Kaplan, D. L.; Zamboni, R.; Muccini, M.; Omenetto, F. G. Low-threshold blue lasing from silk fibroin thin films. Appl. Phys. Lett. 2012, 101, 091110.

    Article  Google Scholar 

  16. Applegate, M. B.; Perotto, G.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express 2015, 6, 4221–4227.

    Article  Google Scholar 

  17. Caixeiro, S.; Gaio, M.; Marelli, B.; Omenetto, F. G.; Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mater. 2016, 4, 998–1003.

    Article  Google Scholar 

  18. Lawrence, B. D.; Cronin-Golomb, M.; Georgakoudi, I.; Kaplan, D. L.; Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 2008, 9, 1214–1220.

    Article  Google Scholar 

  19. Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Multiple structural coloring of silk–fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 2013, 23, 5373–5380.

    Article  Google Scholar 

  20. Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835.

    Google Scholar 

  21. Pradhan, P.; Kumar, N. Localization of light in coherently amplifying random media. Phys. Rev. B 1994, 50, 9644–9647.

    Article  Google Scholar 

  22. Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438.

    Article  Google Scholar 

  23. Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.

    Article  Google Scholar 

  24. Noginov, M. A.; Caulfield, H. J.; Noginova, N. E.; Venkateswarlu, P. Line narrowing in the dye solution with scattering centers. Opt. Commun. 1995, 118, 430–437.

    Article  Google Scholar 

  25. Sha, W. L.; Liu, C. H.; Liu, F.; Alfano, R. R. Competition between two lasing modes of sulforhodamine 640 in highly scattering media. Opt. Lett. 1996, 21, 1277–1279.

    Article  Google Scholar 

  26. Yang, H. Y.; Yu, S. F.; Yan, J.; Zhang, L. D. Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res. Lett. 2010, 5, 809–812.

    Article  Google Scholar 

  27. Brito-Silva, A. M.; Galembeck, A.; Gomes, A. S. L.; Jesus-Silva, A. J.; de Araujo, C. B. Random laser action in dye solutions containing Stober silica nanoparticles. J. Appl. Phys. 2010, 108, 033508.

    Article  Google Scholar 

  28. Zhu, H.; Shan, C. X.; Zhang, J. Y.; Zhang, Z. Z.; Li, B. H.; Zhao, D. X.; Yao, B.; Shen, D. Z.; Fan, X. W.; Tang, Z. K. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 2010, 22, 1877–1881.

    Article  Google Scholar 

  29. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367.

    Article  Google Scholar 

  30. Polson, R. C.; Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291.

    Article  Google Scholar 

  31. Song, Q. H.; Xiao, S. M.; Xu, Z. B.; Liu, J. J.; Sun, X. H.; Drachev, V.; Shalaev, V. M.; Akkus, O.; Kim, Y. L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425–1427.

    Article  Google Scholar 

  32. Wang, C. S.; Chang, T. Y.; Lin, T. Y.; Chen, Y. F. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4, 6736.

    Article  Google Scholar 

  33. Zhang, D. K.; Kostovski, G.; Karnutsch, C.; Mitchell, A. Random lasing from dye doped polymer within biological source scatters: The Pomponia imperatorial cicada wing random nanostructures. Org. Electron. 2012, 13, 2342–2345.

    Article  Google Scholar 

  34. Gather, M. C.; Yun, S. H. Single-cell biological lasers. Nat. Photonics 2011, 5, 406–410.

    Article  Google Scholar 

  35. Kim, S.; Yang, S.; Choi, S. H.; Kim, Y. L.; Ryu, W.; Joo, C. Random lasing from structurally-modulated silk fibroin nanofibers. Sci. Rep. 2017, 7, 4506.

    Article  Google Scholar 

  36. Etemad, S.; Thompson, R.; Andrejco, M. J. Weak localization of photons: Universal fluctuations and ensemble averaging. Phys. Rev. Lett. 1986, 57, 575–578.

    Article  Google Scholar 

  37. Kim, Y. L.; Liu, Y.; Turzhitsky, V. M.; Roy, H. K.; Wali, R. K.; Backman, V. Coherent backscattering spectroscopy. Opt. Lett. 2004, 29, 1906–1908.

    Article  Google Scholar 

  38. Andreasen, J.; Asatryan, A. A.; Botten, L. C.; Byrne, M. A.; Cao, H.; Ge, L.; Labonté, L.; Sebbah, P.; Stone, A. D.; Türeci, H. E. et al. Modes of random lasers. Adv. Opt. Photonics 2011, 3, 88–127.

    Article  Google Scholar 

  39. Kim, H.; Che, L. H.; Ha, Y.; Ryu, W. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2014, 40, 324–335.

    Article  Google Scholar 

  40. Van Albada, M. P.; Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 1985, 55, 2692–2695.

    Article  Google Scholar 

  41. Wolf, P. E.; Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 1985, 55, 2696–2699.

    Article  Google Scholar 

  42. Wiersma, D. S.; Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 1996, 54, 4256–4265.

    Article  Google Scholar 

  43. Luan, F.; Gu, B. B.; Gomes, A. S. L.; Yong, K. T.; Wen, S. C.; Prasad, P. N. Lasing in nanocomposite random media. Nano Today 2015, 10, 168–192.

    Article  Google Scholar 

  44. Wu, X.; Cao, H. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems. Phys. Rev. A 2008, 77, 013832.

    Article  Google Scholar 

  45. Zhang, Q.; Zhao, Y. H.; Yan, S. Q.; Yang, Y. M.; Zhao, H. J.; Li, M. Z.; Lu, S. Z.; Kaplan, D. L. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater. 2012, 8, 2628–2638.

    Article  Google Scholar 

  46. Tenopala-Carmona, F.; García-Segundo, C.; Cuando-Espitia, N.; Hernández- Cordero, J. Angular distribution of random laser emission. Opt. Lett. 2014, 39, 655–658.

    Article  Google Scholar 

  47. Zhang, R.; Knitter, S.; Liew, S. F.; Omenetto, F. G.; Reinhard, B. M.; Cao, H.; Dal Negro, L. Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers. Appl. Phys. Lett. 2016, 108, 011103.

    Article  Google Scholar 

  48. Gaikwad, P.; Bachelard, N.; Sebbah, P.; Backov, R.; Vallée, R. A. L. Competition and coexistence of Raman and random lasing in silica-/titania-based solid foams. Adv. Opt. Mater. 2015, 3, 1640–1651.

    Article  Google Scholar 

  49. Cyprych, K.; Sznitko, L.; Mysliwiec, J. Starch: Application of biopolymer in random lasing. Org. Electron. 2014, 15, 2218–2222.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the research program of the National Research Foundation of Korea (NRF) (NRF-2015R1A5A1037668).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chulmin Joo or WonHyoung Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Kim, S., Shin, H. et al. Random lasing detection of structural transformation and compositions in silk fibroin scaffolds. Nano Res. 12, 289–297 (2019). https://doi.org/10.1007/s12274-018-2213-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2213-7

Keywords

Navigation