Skip to main content
Log in

Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

All-inorganic CsPbBr3 perovskite quantum dots (QDs) hold great promise as candidate materials for next-generation electroluminescent displays owing to their excellent optoelectronic properties. However, the long insulating ligands on the surface of CsPbBr3 QDs originating from the synthesis process hinder the fabrication of high-performance optoelectronic devices. Herein, an efficient ligand-exchange route is proposed with the use of perovskite-precursor-based halide ligands, including a series of phenalkylammonium bromides with a π-conjugation benzene ring and different branch lengths. Based on the ligand-exchange method, the conductivity of the CsPbBr3 QD layer is significantly improved owing to ligand shortening and the insertion of the π-conjugation benzene ring. As a result, high brightness (up to 12,650 cd/m2) and low turn-on voltage (as low as 2.66 V) can be realized in CsPbBr3 QD light-emitting diodes (QLEDs), leading to dramatic improvements in device performance with a current efficiency of 13.43 cd/A, power efficiency of 12.05 lm/W, and external quantum efficiency of 4.33%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y. H.; Cho, H.; Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694–11702.

    Article  Google Scholar 

  2. National Renewable Energy Laboratory. Best research cell efficiency [Online]. https://doi.org/www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed May 16, 2018).

  3. Voznyy, O.; Sutherland, B. R.; Ip, A. H.; Zhitomirsky, D.; Sargent, E. H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat. Rev. Mater. 2017, 2, 17026.

    Article  Google Scholar 

  4. Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

    Article  Google Scholar 

  5. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  6. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  Google Scholar 

  7. Zhang, T.; Li, G. P.; Chang, Y. J.; Wang, X. Y.; Zhang, B.; Mou, H. H.; Jiang, Y. Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. Crystengcomm 2017, 19, 1165–1171.

    Article  Google Scholar 

  8. Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

    Article  Google Scholar 

  9. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  Google Scholar 

  10. Lu, C.; Li, H.; Kolodziejski, K.; Dun, C. C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.

    Article  Google Scholar 

  11. Lou, Y. B.; Niu, Y. D.; Yang, D. W.; Xu, Q. L.; Hu, Y. H.; Shen, Y.; Ming, J.; Chen, J. X.; Zhang, L. J.; Zhao, Y. X. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN− doped CsPbBr3 perovskite nanocrystals. Nano Res. 2018, 11, 2715–2723.

    Article  Google Scholar 

  12. Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

    Article  Google Scholar 

  13. Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

    Article  Google Scholar 

  14. Shi, Z. F.; Li, Y.; Zhang, Y. T.; Chen, Y. S.; Li, X. J.; Wu, D.; Xu, T. T.; Shan, C. X.; Du, G. T. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313–321.

    Article  Google Scholar 

  15. Wang, H. C.; Wang, W. G.; Tang, A. C.; Tsai, H. Y.; Bao, Z.; Ihara, T.; Yarita, N.; Tahara, H.; Kanemitsu, Y.; Chen, S. M. et al. High-performance CsPb1–xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem., Int. Ed. 2017, 56, 13650–13654.

    Article  Google Scholar 

  16. Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

    Article  Google Scholar 

  17. Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

    Article  Google Scholar 

  18. Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; De la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.

    Article  Google Scholar 

  19. Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.

    Article  Google Scholar 

  20. Zhang, X. Y.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W. C. H.; Rogach, A. L. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016, 16, 1415–1420.

    Article  Google Scholar 

  21. Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.

    Article  Google Scholar 

  22. Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

    Article  Google Scholar 

  23. Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

    Article  Google Scholar 

  24. Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

    Article  Google Scholar 

  25. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

    Article  Google Scholar 

  26. Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204.

    Article  Google Scholar 

  27. Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

    Article  Google Scholar 

  28. Dolzhnikov, D. S.; Zhang, H.; Jang, J.; Son, J. S.; Panthani, M. G.; Shibata, T.; Chattopadhyay, S.; Talapin, D. V. Composition-matched molecular “solders” for semiconductors. Science 2015, 347, 425–428.

    Article  Google Scholar 

  29. Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

    Article  Google Scholar 

  30. Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115.

    Article  Google Scholar 

  31. Wang, N. N.; Cheng, L.; Ge, R.; Zhang, S. T.; Miao, Y. F.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 2016, 10, 699–704.

    Article  Google Scholar 

  32. De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    Article  Google Scholar 

  33. Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces 2015, 7, 25007–25013.

    Article  Google Scholar 

  34. Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

    Article  Google Scholar 

  35. Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

    Article  Google Scholar 

  36. Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060.

    Article  Google Scholar 

  37. Ning, Z. J.; Gong, X. W.; Comin, R.; Walters, G.; Fan, F. J.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H. Quantum-dot-inperovskite solids. Nature 2015, 523, 324–328.

    Article  Google Scholar 

  38. Liu, M. X.; Voznyy, O.; Sabatini, R.; De Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater. 2017, 16, 258–263.

    Article  Google Scholar 

  39. Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; Mcgehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem., Int. Ed. 2014, 53, 11232–11235.

    Article  Google Scholar 

  40. Yang, S.; Niu, W. X.; Wang, A. L.; Fan, Z. X.; Chen, B.; Tan, C. L.; Lu, Q. P.; Zhang, H. Ultrathin two-dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem., Int. Ed. 2017, 56, 4252–4255.

    Article  Google Scholar 

  41. Ng, Y. F.; Kulkarni, S. A.; Parida, S.; Jamaludin, N. F.; Yantara, N.; Bruno, A.; Soci, C.; Mhaisalkar, S.; Mathews, N. Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling. Chem. Commun. 2017, 53, 12004–12007.

    Article  Google Scholar 

  42. Quan, L. N.; Zhao, Y. B.; García de Arquer, F. P.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y. Y.; Fan, J. Z.; Tan, H. R. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient greenlight emission. Nano Lett. 2017, 17, 3701–3709.

    Article  Google Scholar 

  43. Si, J. J.; Liu, Y.; He, Z. F.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M. M.; Tian, H.; He, H. P. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017, 11, 11100–11107.

    Article  Google Scholar 

  44. Li, G. P.; Wang, H.; Zhang, T.; Mi, L. F.; Zhang, Y. G.; Zhang, Z. P.; Zhang, W. J.; Jiang, Y. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 8478–8486.

    Article  Google Scholar 

  45. Adachi, M. M.; Fan, F. J.; Sellan, D. P.; Hoogland, S.; Voznyy, O.; Houtepen, A. J.; Parrish, K. D.; Kanjanaboos, P.; Malen, J. A.; Sargent, E. H. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 2015, 6, 8694.

    Article  Google Scholar 

  46. Kagan, C. R.; Murray, C. B.; Nirmal, M.; Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76, 1517–1520.

    Article  Google Scholar 

  47. Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644–15648.

    Article  Google Scholar 

  48. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 2012, 3, 1169–1175.

    Article  Google Scholar 

  49. Song, L.; Guo, X. Y.; Hu, Y. S.; Lv, Y.; Lin, J.; Liu, Z. Q.; Fan, Y.; Liu, X. Y. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J. Phys. Chem. Lett. 2017, 8, 4148–4154.

    Article  Google Scholar 

  50. Xu, J. W.; Huang, W. X.; Li, P. Y.; Onken, D. R.; Dun, C. C.; Guo, Y.; Ucer, K. B.; Lu, C.; Wang, H. Z.; Geyer, S. M. et al. Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: Kinetics, enhanced oscillator strength, and application in light-emitting diodes. Adv. Mater. 2017, 29, 1703703.

    Article  Google Scholar 

  51. Kim, Y. H.; Wolf, C.; Kim, Y. T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C. G.; Rhee, S. W.; Im, S. H. et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 2017, 11, 6586–6593.

    Article  Google Scholar 

  52. Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

    Article  Google Scholar 

  53. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1632151, 61076040, 61520106012, 61522505, and 61722404), the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology of China in National University of Defense Technology (No. SKL 2015 KF04), and the Key Research and Development Project of Anhui Province of China (No. 1704a0902023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Tang or Yang Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Huang, J., Li, Y. et al. Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Res. 12, 109–114 (2019). https://doi.org/10.1007/s12274-018-2187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2187-5

Keywords

Navigation