Skip to main content
Log in

Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN doped CsPbBr3 perovskite nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, the pseudohalide thiocyanate has been demonstrated as a promising alternative to the halide anion to engineer optoelectronic properties of inorganic/organic hybrid perovskites because it exhibits better chemical stability than the halide anion. Previous reports have suggested that the ionic radii and electronegativity of SCN is close to that of I; the SCN doped CH3NH3PbI3 exhibited similar optical properties as pure CH3NH3PbI3. Consequently, it was expected that doping of CsPbBr3 perovskite with SCN would result in band gap narrowing. Interestingly, the photoluminescent all-inorganic CsPbBr3 perovskite nanocrystals exhibit an abnormal blue shift in optical properties and improvement of the crystallinity when successfully doped by SCN. Combined experimental and theoretical investigations revealed that doping of the CsPbBr3 perovskite with the rod-like SCN anion introduced disorder in the crystal lattice, leading to its expansion, and impacted the electronic structure of the perovskite with band gap broadening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  2. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  3. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

    Article  Google Scholar 

  4. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  Google Scholar 

  5. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  6. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  Google Scholar 

  7. Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z. F.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722–2727.

    Article  Google Scholar 

  8. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  9. Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

    Article  Google Scholar 

  10. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.

    Article  Google Scholar 

  11. Chen, Y. H.; Chen, T.; Dai, L. M. Layer-by-layer growth of CH3NH3PbI3–xClx for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 2015, 27, 1053–1059.

    Article  Google Scholar 

  12. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  Google Scholar 

  13. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  Google Scholar 

  14. Li, Q. L.; Lu, W. X.; Wan, N.; Ding, S. N. Tuning optical properties of perovskite nanocrystals by supermolecular mercapto-β-cyclodextrin. Chem. Commun. 2016, 52, 12342–12345.

    Article  Google Scholar 

  15. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and nearinfrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

    Article  Google Scholar 

  16. Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

    Article  Google Scholar 

  17. Gonzalez-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. Opt. Express 2016, 24, A285–A301.

    Article  Google Scholar 

  18. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  Google Scholar 

  19. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgaptunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

    Article  Google Scholar 

  20. Chen, Y. N.; Li, B. B.; Huang, W.; Gao, D. Q.; Liang, Z. Q. Efficient and reproducible CH3NH3PbI3–x(SCN)x perovskite based planar solar cells. Chem. Commun. 2015, 51, 11997–11999.

    Article  Google Scholar 

  21. Tai, Q. D.; You, P.; Sang, H. Q.; Liu, Z. K.; Hu, C. L.; Chan, H. L. W.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 2016, 7, 11105.

    Article  Google Scholar 

  22. Chiang, Y. H.; Li, M. H.; Cheng, H. M.; Shen, P. S.; Chen, P. Mixed cation thiocyanate-based pseudohalide perovskite solar cells with high efficiency and stability. ACS Appl. Mater. Interfaces 2017, 9, 2403–2409.

    Article  Google Scholar 

  23. Halder, A.; Chulliyil, R.; Subbiah, A. S.; Khan, T.; Chattoraj, S.; Chowdhury, A.; Sarkar, S. K. Pseudohalide (SCN–)-doped MAPbI3 perovskites: A few surprises. J. Phys. Chem. Lett. 2015, 6, 3483–3489.

    Article  Google Scholar 

  24. Xiao, Z. W.; Meng, W. W.; Saparov, B.; Duan, H. S.; Wang, C. L.; Feng, C. B.; Liao, W. Q.; Ke, W. J.; Zhao, D. W.; Wang, J. B. et al. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: A combined experimental and density functional theory study. J. Phys. Chem. Lett. 2016, 7, 1213–1218.

    Article  Google Scholar 

  25. Jiang, Q. L.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chem., Int. Ed. 2015, 54, 7617–7620.

    Article  Google Scholar 

  26. Daub, M.; Hillebrecht, H. Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem., Int. Ed. 2015, 54, 11016–11017.

    Article  Google Scholar 

  27. Tang, G.; Yang, C.; Stroppa, A.; Fang, D. N.; Hong, J. W. Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. J. Chem. Phys. 2017, 146, 224702.

    Article  Google Scholar 

  28. Wei, S.; Yang, Y. C.; Kang, X. J.; Wang, L.; Huang, L. J.; Pan, D. C. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50%–85% photoluminescence quantum yields. Chem. Commun. 2016, 52, 7265–7268.

    Article  Google Scholar 

  29. Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

    Article  Google Scholar 

  30. Li, Z.; Yang, M. J.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

    Article  Google Scholar 

  31. Chen, Y.; He, M. H.; Peng, J. J.; Sun, Y.; Liang, Z. Q. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392.

    Article  Google Scholar 

  32. Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563–3570.

    Article  Google Scholar 

  33. Sadhanala, A.; Ahmad, S.; Zhao, B. D.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P. et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 2015, 15, 6095–6101.

    Article  Google Scholar 

  34. Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617.

    Article  Google Scholar 

  35. Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces 2015, 7, 25007–25013.

    Article  Google Scholar 

  36. De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

    Article  Google Scholar 

  37. Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

    Article  Google Scholar 

  38. Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y. F.; Wei, S.-H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942.

    Article  Google Scholar 

  39. Yang, D. W.; Lv, J.; Zhao, X. G.; Xu, Q. L.; Fu, Y. H.; Zhan, Y. Q.; Zunger, A.; Zhang, L. J. Functionality-directed screening of Pb-free hybrid organic–inorganic perovskites with desired intrinsic photovoltaic functionalities. Chem. Mater. 2017, 29, 524–538.

    Article  Google Scholar 

  40. Boyd, R. J.; Boyd, S. L. Group electronegativities from the bond critical point model. J. Am. Chem. Soc. 1992, 114, 1652–1655.

    Article  Google Scholar 

  41. Leonard, G. W.; Smith, M. E.; Hume, D. N. Thiocyanate complexes of lead and thallium in solution. J. Phys. Chem. 1956, 60, 1493–1495.

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Nos. 21475021, 21427807, 61722403, 11404131, and 11674121), the Natural Science Foundation of Jiangsu Province (No. BK20141331), the Fundamental Research Funds for the Central Universities, Program for JLU Science and Technology Innovative Research Team, the Special Fund for Talent Exploitation in Jilin Province of China, Jiangsu provincial financial support of fundamental conditions and science and technology for people’s livelihood for Jiangsu key laboratory of advanced metallic materials (No. BM2007204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbing Lou, Lijun Zhang or Yixin Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Niu, Y., Yang, D. et al. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN doped CsPbBr3 perovskite nanocrystals. Nano Res. 11, 2715–2723 (2018). https://doi.org/10.1007/s12274-017-1901-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1901-z

Keywords

Navigation