Skip to main content
Log in

Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Catalytic hydrogenation is an important process in the chemical industry. Traditional catalysts require the effective cleavage of hydrogen molecules on the metal-catalyst surface, which is difficult to achieve with non-noble metal catalysts. In this work, we report a new hydrogenation method based on water/proton reduction, which is completely different from the catalytic cleavage of hydrogen molecules. Active hydrogen species and photo-generated electrons can be directly applied to the hydrogenation process with Cu1.94S-Zn0.23Cd0.77S semiconductor heterojunction nanorods. Nitrobenzene, with a variety of substituent groups, can be efficiently reduced to the corresponding aniline without the addition of hydrogen gas. This is a novel and direct pathway for hydrogenation using non-noble metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.

    Book  Google Scholar 

  2. Vogt, P. F.; Gerulis, J. J. Amines, aromatic. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH: New York, 2000.

    Google Scholar 

  3. Liu, Y. G.; Lu, Y. S.; Prashad, M.; Repič, O.; Blacklock, T. J. A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Adv. Synth. Catal. 2005, 347, 217–219.

    Article  Google Scholar 

  4. Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  Google Scholar 

  5. Downing, R. S.; Kunkeler, P. J.; Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

    Article  Google Scholar 

  6. Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    Article  Google Scholar 

  7. Wang, P.; Han, L.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 2011, 4, 1153–1162.

    Article  Google Scholar 

  8. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

    Article  Google Scholar 

  9. Li, L. Y.; Zhou, C. S.; Zhao, H. X.; Wang, H. X.; Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Res. 2015, 8, 709–721.

    Article  Google Scholar 

  10. Shimizu, K. I.; Miyamoto, Y.; Satsuma, A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 2010, 270, 86–94.

    Article  Google Scholar 

  11. Antonetti, C.; Oubenali, M.; Galletti, A. M. R.; Serp, P.; Vannucci, G. Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl. Catal. A 2012, 421–422, 99–107.

    Article  Google Scholar 

  12. Tomkins, P.; Gebauer-Henke, E.; Leitner, W.; Müller, T. E. Concurrent hydrogenation of aromatic and nitro groups over carbon-supported ruthenium catalysts. ACS Catal. 2015, 5, 203–209.

    Article  Google Scholar 

  13. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabean, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    Article  Google Scholar 

  14. Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem., Int. Ed. 2016, 55, 15175–15179.

    Article  Google Scholar 

  15. Jagadeesh, R. V.; Stemmler, T.; Surkus, A. E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines. Nat. Protoc. 2015, 10, 548–557.

    Article  Google Scholar 

  16. Liu, L. C.; Concepción, P.; Corma, A. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 2016, 340, 1–9.

    Article  Google Scholar 

  17. Chen, B. F.; Li, F. B.; Huang, Z. J.; Yuan, G. Q. Recyclable and selective nitroarene hydrogenation catalysts based on carbon-coated cobalt oxide nanoparticles. ChemCatChem 2016, 8, 1132–1138.

    Article  Google Scholar 

  18. Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88–98.

    Article  Google Scholar 

  19. Jiang, C. J.; Shang, Z. Y.; Liang, X. H. Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 2015, 5, 4814–4818.

    Article  Google Scholar 

  20. Hao, C. H.; Guo, X. N.; Pan, Y. T.; Chen, S.; Jiao, Z. F.; Yang, H.; Guo, X. Y. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc. 2016, 138, 9361–9364.

    Article  Google Scholar 

  21. Kar, P.; Farsinezhad, S.; Mahdi, N. J.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

    Article  Google Scholar 

  22. Pan, X. Y.; Xu, Y. J. Efficient thermal- and photocatalyst of Pd nanoparticles on TiO2 achieved by an oxygen vacancies promoted synthesis strategy. ACS Appl. Mater. Interfaces 2014, 6, 1879–1886.

    Article  Google Scholar 

  23. Zhang, N.; Xu, Y. J. Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem. Mater. 2013, 25, 1979–1988.

    Article  Google Scholar 

  24. Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286–4289.

    Article  Google Scholar 

  25. Marco-Contelles, J.; do Carmo Carreiras, M.; Rodríguez, C.; Villarroya, M.; García, A. G. Synthesis and pharmacology of galantamine. Chem. Rev. 2006, 106, 116–133.

    Article  Google Scholar 

  26. Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. A facile “dispersion-decomposition” route to metal sulfide nanocrystals. Chem.-Eur. J. 2011, 17, 10445–10452.

    Article  Google Scholar 

  27. Yi, L. X.; Liu, Y. Y.; Yang, N. L.; Tang, Z. Y.; Zhao, H. J.; Ma, G. H.; Su Z. G.; Wang, D. One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and highperformance counter electrodes of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 835–840.

    Article  Google Scholar 

  28. Yi, L. X.; Wang, D.; Gao, M. Y. Synthesis of Cu3SnS4 nanocrystals and nanosheets by using Cu31S16 as seeds. CrystEngComm 2012, 14, 401–404.

    Article  Google Scholar 

  29. Kolny-Olesiak, J. Synthesis of copper sulphide-based hybrid nanostructures and their application in shape control of colloidal semiconductor nanocrystals. CrystEngComm 2014, 16, 9381–9390.

    Article  Google Scholar 

  30. Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 2010, 4, 7303–7314.

    Article  Google Scholar 

  31. Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

    Article  Google Scholar 

  32. Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Yang, M. Y.; Xu, Y. J. Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C 2012, 116, 18023–18031.

    Article  Google Scholar 

  33. Yang, M. Q.; Weng, B.; Xu, Y. J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach. Langmuir 2013, 29, 10549–10558.

    Article  Google Scholar 

  34. Liu, S. Q.; Xu, Y. J. Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect. Nanoscale 2013, 5, 9330–9339.

    Article  Google Scholar 

  35. Serna, P.; Corma, A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal. 2015, 5, 7114–7121.

    Article  Google Scholar 

  36. Xu, K. L.; Zhang, Y.; Chen, X. R.; Huang, L.; Zhang, R.; Huang, J. Convenient and selective hydrogenation of nitro aromatics with a platinum nanocatalyst under ambient pressure. Adv. Synth. Catal. 2011, 353, 1260–1264.

    Article  Google Scholar 

  37. Maeqawa, T.; Fujita, Y.; Sakurai, A.; Akashi, A.; Sato, M.; Oono, K.; Sajiki, H. Pd/C(en) catalyzed chemoselective hydrogenation in the presence of aryl nitriles. Chem. Pharm. Bull. 2007, 55, 837–839.

    Article  Google Scholar 

  38. Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res. 2016, 9, 1879–1890.

    Article  Google Scholar 

  39. Perret, N.; Wang, X. D.; Onfroy, T.; Calers, C.; Keane, M. A. Selectivity in the gas-phase hydrogenation of 4-nitrobenzaldehyde over supported Au catalysts. J. Catal. 2014, 309, 333–342.

    Article  Google Scholar 

  40. Blaser, H. U.; Siegrist, U.; Steiner, H. Aromatic nitro compounds. In Fine Chemicals Through Heterogeneous Catalysis. Sheldon, R. A.; van Bekkum, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001.

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for support (Nos. 21325101, 21231005, and 21171105) and China Ministry of Science and Technology under Contract of 2016YFA (No. 0202801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Peng, Zhongbin Zhuang or Yadong Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Chen, Z., Chen, Y. et al. Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Res. 11, 3730–3738 (2018). https://doi.org/10.1007/s12274-017-1944-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1944-1

Keywords

Navigation