Skip to main content
Log in

Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) is an earth-abundant and low-cost hydrogen evolving electrocatalyst with the potential to replace traditional noble metal catalysts. The catalytic activity can be significantly enhanced after modification due to higher conductivity and enriched active sites. However, the underlying mechanism of the influence of the resistance of electrode material and contact resistance on the hydrogen evolution reaction (HER) process is unclear. Herein, we present a systematic study to understand the relationship between HER performance and electrode conductivity, which is bi-tuned through the electric field and photoelectrical effect. It was found that the onset overpotential consistently decreased with the increase of electrode conductivity. In addition, the reduction of the contact resistance resulted in a quicker electrochemical reaction process than enhancing the conductivity of the MoS2 nanosheet. An onset overpotential of 89 mV was achieved under 60 mW/cm2 sunlight illumination (0.6 sun) and a simultaneous gate voltage of 3 V. These physical strategies can also be applied to other catalysts, and offer new directions to improve HER catalytic performance of semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  3. Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A Perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448.

    Article  Google Scholar 

  4. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  5. Conway, B. E.; Jerkiewicz, G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the “volcano curve” for cathodic H2 evolution kinetics. Electrochim. Acta 2000, 45, 4075–4083.

    Article  Google Scholar 

  6. Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

    Article  Google Scholar 

  7. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  Google Scholar 

  8. Stephens, I. E. L.; Chorkendorff, I. Minimizing the use of platinum in hydrogen-evolving electrodes. Angew. Chem., Int. Ed. 2011, 50, 1476–1477.

    Article  Google Scholar 

  9. Late, D. J.; Liu, B.; Ramakrishna Matte, H. S. S.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

    Article  Google Scholar 

  10. Baugher, B. W. H.; Churchill, H. O. H., Yang, Y. F.; Jarillo-Herrero, P. Intrinsic electronic transport properties of high quality monolayer and bilayer MoS2. Nano Lett. 2013, 13, 4212–4216.

    Article  Google Scholar 

  11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  12. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phy. Lett. 2013, 102, 042104.

    Article  Google Scholar 

  13. Zhang, Y. J.; Ye, J. T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y. Formation of a stable p-n Junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 2013, 13, 3023-3028.

    Article  Google Scholar 

  14. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880–2888.

    Article  Google Scholar 

  15. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, P. K.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  16. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    Article  Google Scholar 

  17. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energ. Environ. Sci. 2011, 4, 3878–3888.

    Article  Google Scholar 

  18. Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.

    Article  Google Scholar 

  19. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  Google Scholar 

  20. Zhang, B.; Liu, J.; Wang, J. S.; Ruan, Y. J.; Ji, X.; Xu, K.; Chen, C.; Wan, H. Z.; Miao, L.; Jiang, J. J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80.

    Article  Google Scholar 

  21. Hu, W. H.; Shang, X.; Han, G. Q.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 2016, 100, 236–242.

    Article  Google Scholar 

  22. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    Article  Google Scholar 

  23. Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

    Article  Google Scholar 

  24. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    Article  Google Scholar 

  25. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    Article  Google Scholar 

  26. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  Google Scholar 

  27. Thomas, J. G. N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans. Faraday Soc. 1960, 57, 1603–1611.

    Article  Google Scholar 

  28. Gołasa, K.; Grzeszczyk, M.; Korona, K. P.; Bożek, R.; Binder, J.; Szczytko, J.; Wysmołek, A.; Babiński, A. Optical properties of molybdenum disulfide (MoS2). Acta Phy. Polonica A 2013, 124, 849–851.

    Article  Google Scholar 

  29. Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301–310.

    Article  Google Scholar 

  30. Zabinski, J. S.; Donley, M. S.; McDevittb, N. T. Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear 1993, 165, 103–108.

    Article  Google Scholar 

  31. Azizi, O.; Jafarian, M.; Gobal, F.; Heli, H.; Mahjani, M. G. The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int. J. Hydrogen Energ. 2007, 32, 1755–1761.

    Article  Google Scholar 

  32. Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2– clusters. Nat. Chem. 2014, 6, 248–253.

    Article  Google Scholar 

  33. Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castroe Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

    Article  Google Scholar 

  34. Velický, M.; Bissett, M. A.; Woods, C. R.; Toth, P. S.; Georgiou, T.; Kinloch, I. A.; Novoselov, K. S.; Dryfe, R. A.W. Photoelectrochemistry of pristine mono- and few-layer MoS2. Nano Lett. 2016, 16, 2023–2032.

    Article  Google Scholar 

  35. Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931–940.

    Article  Google Scholar 

  36. Yan, M. Y.; Pan, X. L.; Wang, P. Y.; Chen, F.; He, L.; Jiang, G. P.; Wang, J. H.; Liu, J. Z.; Xu, X.; Liao, X. B. et al. Field-effect tuned adsorptiondynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109–4115.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0202603 and 2016YFA0202604), the National Basic Research Program of China (No. 2013CB934103), the National Natural Science Foundation of China (Nos. 51521001, 51272197, 51302203, 51502227, 51579198), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the China Postdoctoral Science Foundation (No. 2015T80845), the Hubei Provincial Natural Science Fund for Distinguished Young Scholars (No. 2014CFA035), the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-062, 2014-IV-147, 2016III001, 2016III005) and the National Students Innovation and Entrepreneurship Training Program (WUT: 20161049701003). M. Y. Y. would like to acknowledge the support from State of Washington through the Washington Research Foundation Innovation Fellowship at the University of Washington Clean Energy Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Zhou, X., Pan, X. et al. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Res. 11, 3205–3212 (2018). https://doi.org/10.1007/s12274-017-1802-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1802-1

Keywords

Navigation