Skip to main content
Log in

Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire-coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm−2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, S. W.; Yang, Z. B.; Chen, P. N.; Deng, J.; Li, H. P.; Peng, H. S. Wearable solar cells by stacking textile electrodes. Angew. Chem., Int. Ed. 2014, 126, 6224–6228.

    Article  Google Scholar 

  2. Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K.-J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R.-H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

    Article  Google Scholar 

  3. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  4. Kim, D.-H.; Lu, N. S.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  Google Scholar 

  5. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  6. Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O. G. Imperceptible magnetoelectronics. Nat. Commun. 2015, 6, 6080.

    Article  Google Scholar 

  7. Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.

    Article  Google Scholar 

  8. Bandodkar, A. J.; Nunez-Flores, R.; Jia, W.; Wang, J. All-printed stretchable electrochemical devices. Adv. Mater. 2015, 27, 3060–3065.

    Article  Google Scholar 

  9. Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

    Article  Google Scholar 

  10. Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.

    Article  Google Scholar 

  11. Hyun, D. C.; Park, M.; Park, C.; Kim, B.; Xia, Y. N.; Hur, J. H.; Kim, J. M.; Park, J. J.; Jeong, U. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv. Mater. 2011, 23, 2946–2950.

    Article  Google Scholar 

  12. Gray, D. S.; Tien, J.; Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.

    Article  Google Scholar 

  13. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  Google Scholar 

  14. Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140.

    Article  Google Scholar 

  15. Kwon, Y. H.; Woo, S.-W.; Jung, H.-R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S.-Y.; Song, S.-W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

    Article  Google Scholar 

  16. Yan, C. Y.; Wang, X.; Cui, M. Q.; Wang, J. Q.; Kang, W. X.; Foo, C. Y.; Lee, P. S. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy. Mater. 2014, 4, 1301396.

    Article  Google Scholar 

  17. Park, J.; Wang, S. D.; Li, M.; Ahn, C.; Hyun, J. K.; Kim, D. S.; Kim do, K.; Rogers, J. A.; Huang, Y. G.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 916.

    Article  Google Scholar 

  18. Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472.

    Article  Google Scholar 

  19. Sun, Y. M.; Lopez, J.; Lee, H.-W.; Liu, N.; Zheng, G. Y.; Wu, C.-L.; Sun, J.; Liu, W.; Chung, J. W.; Bao, Z. et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater. 2016, 28, 2455–2461.

    Article  Google Scholar 

  20. Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

    Article  Google Scholar 

  21. Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J.-G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

    Article  Google Scholar 

  22. Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.

    Article  Google Scholar 

  23. Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

    Article  Google Scholar 

  24. Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 126, 7998–8003.

    Article  Google Scholar 

  25. Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.

    Article  Google Scholar 

  26. Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857.

    Article  Google Scholar 

  27. Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.

    Article  Google Scholar 

  28. Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.

    Article  Google Scholar 

  29. Kettlgruber, G.; Kaltenbrunner, M.; Siket, C. M.; Moser, R.; Graz, I. M.; Schwödiauer, R.; Bauer, S. Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J. Mater. Chem. A 2013, 1, 5505–5508.

    Article  Google Scholar 

  30. Ge, J.; Yao, H.-B.; Wang, X.; Ye, Y.-D.; Wang, J.-L.; Wu, Z.-Y.; Liu, J.-W.; Fan, F.-J.; Gao, H.-L.; Zhang, C.-L. et al. Stretchable conductors based on silver nanowires: Improved performance through a binary network design. Angew. Chem., Int. Ed. 2013, 52, 1654–1659.

    Article  Google Scholar 

  31. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    Article  Google Scholar 

  32. Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  Google Scholar 

  33. Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.

    Article  Google Scholar 

  34. Friis, E. A.; Lakes, R. S.; Park, J. B. Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 1988, 23, 4406–4414.

    Article  Google Scholar 

  35. Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.

    Article  Google Scholar 

  36. Kaltenbrunner, M.; Kettlgruber, G.; Siket, C.; Schwödiauer, R.; Bauer, S. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 2010, 22, 2065–2067.

    Article  Google Scholar 

  37. Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006 and 21761132008), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSWSLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HW., Ge, J., Peng, YC. et al. Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Res. 11, 1554–1562 (2018). https://doi.org/10.1007/s12274-017-1771-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1771-4

Keywords

Navigation