Skip to main content
Log in

Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of ~2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  2. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  Google Scholar 

  3. Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563–6570.

  4. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based fieldeffect transistors for sensing NOat room temperature. Small 2012, 8, 63–67.

    Article  Google Scholar 

  5. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    Article  Google Scholar 

  6. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  Google Scholar 

  7. Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277.

    Article  Google Scholar 

  8. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

    Article  Google Scholar 

  9. Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

    Article  Google Scholar 

  10. Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transitionmetal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210–1214.

    Article  Google Scholar 

  11. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    Article  Google Scholar 

  12. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

    Article  Google Scholar 

  13. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  Google Scholar 

  14. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  15. Yin, Z. Y.; Chen, B.; Bosman, M.; Cao, X. H.; Chen, J. Z.; Zheng, B.; Zhang, H. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 2014, 10, 3537–3543.

    Article  Google Scholar 

  16. Ma, C. B.; Qi, X. Y.; Chen, B.; Bao, S. Y.; Yin, Z. Y.; Wu, X.-J.; Luo, Z. M.; Wei, J.; Zhang, H.-L.; Zhang, H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 2014, 6, 5624–5629.

    Article  Google Scholar 

  17. Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

    Article  Google Scholar 

  18. Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314–3319.

    Google Scholar 

  19. Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D.-D.; Li, J.-J.; Gu, C.-Z.; Meng, X.-M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955.

    Article  Google Scholar 

  20. Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H..; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909–1913.

    Article  Google Scholar 

  21. Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and fewlayer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

    Article  Google Scholar 

  22. Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640–4648.

    Article  Google Scholar 

  23. Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739–3742.

    Article  Google Scholar 

  24. Feng, J. J.; Chen, J. T.; Geng, B. S.; Feng, H. T.; Li, H. J.; Yan, D.; Zhuo, R. F.; Cheng, S.; Wu, Z. G.; Yan, P. X. Two-dimensional hexagonal SnS2 nanoflakes: Fabrication, characterization, and growth mechanism. Appl. Phys. A 2011, 103, 413–419.

    Article  Google Scholar 

  25. Seminovski, Y.; Palacios, P.; Wahnón, P. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor. Thin Solid Films 2013, 535, 387–389.

    Article  Google Scholar 

  26. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  27. He, X. C.; Shen, H. L. Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B: Condens. Matter 2012, 407, 1146–1152.

    Article  Google Scholar 

  28. Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

    Article  Google Scholar 

  29. Liu, Z. X.; Deng, H. Q.; Mukherjee, P. P. Evaluating pristine and modified SnS2 as a lithium-ion battery anode: A firstprinciples study. ACS Appl. Mater. Interfaces 2015, 7, 4000–4009.

    Article  Google Scholar 

  30. Zhuang, H. L.; Hennig, R. G. Theoretical perspective of photocatalytic properties of single-layer SnS2. Phys. Rev. B 2013, 88, 115314.

    Article  Google Scholar 

  31. Joshi, P. D.; Joag, D. S.; Rout, C. S.; Late, D. J. Photosensitive field emission study of SnS2 nanosheets. In Proceedings of the 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, 2014, pp 241–242.

    Google Scholar 

  32. Nørby, P.; Johnsen, S.; Iversen, B. B. Fine tunable aqueous solution synthesis of textured flexible SnS2 thin films and nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9282–9287.

    Article  Google Scholar 

  33. Chang, K.; Wang, Z.; Huang, G. C.; Li, H.; Chen, W. X.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259–266.

    Article  Google Scholar 

  34. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  35. Wahnón, P.; Conesa, J. C.; Palacios, P.; Lucena, R.; Aguilera, I.; Seminovski, Y.; Fresno, F. V-doped SnS2: A new intermediate band material for a better use of the solar spectrum. Phys. Chem. Chem. Phys. 2011, 13, 20401–20407.

    Article  Google Scholar 

  36. Zhong, H. X.; Yang, G. Z.; Song, H. W.; Liao, Q. Y.; Cui, H.; Shen, P. K.; Wang, C.-X. Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 2012, 116, 9319–9326.

    Article  Google Scholar 

  37. Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666–9670.

    Article  Google Scholar 

  38. Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

    Article  Google Scholar 

  39. Wen, S. J.; Pan, H.; Zheng, Y. B. Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. J. Mater. Chem. C 2015, 3, 3714–3721.

    Article  Google Scholar 

  40. Zschieschang, U.; Holzmann, T.; Kuhn, A.; Aghamohammadi, M.; Lotsch, B. V.; Klauk, H. Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer. J. Appl. Phys. 2015, 117, 104509.

    Article  Google Scholar 

  41. Shibata, T.; Miura, T.; Kishi, T.; Nagai, T. Synthesis of single crystal SnS2 by chemical vapor transport method at low temperature using reverse temperature gradient. J. Cryst. Growth 1990, 106, 593–604.

    Article  Google Scholar 

  42. Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325–1332.

    Article  Google Scholar 

  43. Ricica, T.; Strižík, L.; Dostál, L.; Bouška, M.; Vlcek, M.; Beneš, L.; Wágner, T.; Jambor, R. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides. Appl. Organomet. Chem. 2015, 29, 176–180.

    Article  Google Scholar 

  44. Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

    Article  Google Scholar 

  45. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  Google Scholar 

  46. Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Chaki, S. H. Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun. 2015, 201, 54–58.

    Article  Google Scholar 

  47. Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M.-H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703–3708.

    Article  Google Scholar 

  48. De Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R. M.; Jura, M.; Levason, W.; Reid, G. Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursors. Chem. Mater. 2012, 24, 4442–4449.

    Article  Google Scholar 

  49. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  Google Scholar 

  50. Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574.

    Article  Google Scholar 

  51. Lei, S. D.; Wen, F. F.; Li, B.; Wang, Q. Z.; Huang, Y. H.; Gong, Y. J.; He, Y. M.; Dong, P.; Bellah, J.; George, A. et al. Optoelectronic memory using two-dimensional materials. Nano Lett. 2015, 15, 259–265.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office MURI (No. W911NF-11-1-0362), the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. This research was supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (WZ), and through a user project conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongji Gong or Pulickel M. Ajayan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, G., Gong, Y., Lei, S. et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 10, 2386–2394 (2017). https://doi.org/10.1007/s12274-017-1436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1436-3

Keywords

Navigation