Skip to main content
Log in

Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the first attempt of using molecularly imprinted polymers (MIPs) in the shape of nanoparticles that were doped with gold nanoparticles (AuNPs) for surface enhanced Raman scattering (SERS)-based sensing of molecular species. Specifically, AuNPs doped molecularly imprinted nano-spheres (AuNPs@nanoMIPs) were synthesized by one-pot precipitation polymerization using Sudan IV as the template for the SERS sensing. The AuNPs@nanoMIPs were characterized by various modes of scanning transmission electron microscopy (STEM) that showed the exact location of the AuNPs inside the MIP particles. The effects of Au concentration and solution stirring on the shape and the polydispersity of the particles were studied. Significant enhancement of the Raman signals was observed only when the MIP particles were doped with the AuNPs. The SERS signal improved significantly with increase in the Au concentration inside the AuNPs@nanoMIPs. Selectivity measurements of the Sudan IV imprinted AuNPs@nanoMIPs carried out with different Sudan derivatives showed high selectivity of the AuNPs-doped MIP particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheong, W. J.; Yang, S. H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628.

    Article  Google Scholar 

  2. Taguchi, Y.; Takano, E.; Takeuchi, T. SPR sensing of bisphenol A using molecularly imprinted nanoparticles immobilized on slab optical waveguide with consecutive parallel Au and Ag deposition bands coexistent with bisphenol A-immobilized Au nanoparticles. Langmuir 2012, 28, 7083–7088.

    Article  Google Scholar 

  3. Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal. Chim. Acta 2007, 584, 112–121.

    Article  Google Scholar 

  4. Xie, C. G.; Zhang, Z. P.; Wang, D. P.; Guan, G. J.; Gao, D. M.; Liu, J. H. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal. Chem. 2006, 78, 8339–8346.

    Article  Google Scholar 

  5. Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144.

    Article  Google Scholar 

  6. Congur, G.; Senay, H.; Turkcan, C.; Canavar, E.; Erdem, A.; Akgol, S. Estrone specific molecularly imprinted polymeric nanospheres: Synthesis, characterization and applications for electrochemical sensor development. Comb. Chem. High Throughput Screen. 2013, 16, 503–510.

    Article  Google Scholar 

  7. Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron. 2013, 44, 34–40.

    Article  Google Scholar 

  8. Sener, G.; Ozgur, E.; Yilmaz, E.; Uzun, L.; Say, R.; Denizli, A. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens. Bioelectron. 2010, 26, 815–821.

    Article  Google Scholar 

  9. Ivanova-Mitseva, P. K.; Guerreiro, A.; Piletska, E. V.; Whitcombe, M. J.; Zhou, Z. X.; Mitsev, P. A.; Davis, F.; Piletsky, S. A. Cubic molecularly imprinted polymer nanoparticles with a fluorescent core. Angew. Chem., Int. Ed. 2012, 51, 5196–5199.

    Article  Google Scholar 

  10. Sener, G.; Uzun, L.; Say, R.; Denizli, A. Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sens. Actuators B Chem. 2011, 160, 791–799.

    Article  Google Scholar 

  11. Chang, L. M.; Ding, Y.; Li, X. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications. Biosens. Bioelectron. 2013, 50, 106–110.

    Article  Google Scholar 

  12. Wackerlig, J.; Lieberzeit, P. A. Molecularly imprinted polymer nanoparticles in chemical sensing-synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157.

    Article  Google Scholar 

  13. Qiu, J. J.; Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 2014, 118, 20735–20749.

    Article  Google Scholar 

  14. Ahmad, R.; Griffete, N.; Lamouri, A.; Felidj, N.; Chehimi, M. M.; Mangeney, C. Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chem. Mat. 2015, 27, 5464–5478.

    Article  Google Scholar 

  15. Gholivand, M. B.; Torkashvand, M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. Mater. Sci. Eng. C 2016, 59, 594–603.

    Article  Google Scholar 

  16. Wang, X. J.; Luo, C. N.; Li, L. L.; Duan, H. M. An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Adv. 2015, 5, 92932–92939.

    Article  Google Scholar 

  17. Peng, D. H.; Li, X.; Zhang, L. Z.; Gong, J. M. Novel visible-light-responsive photoelectrochemical sensor of 2,4-dichlorophenoxyacetic acid using molecularly imprinted polymer/BiOI nanoflake arrays. Electrochem. Commun. 2014, 47, 9–12.

    Article  Google Scholar 

  18. Metzger, T. S.; Tel-Vered, R.; Willner, I. Controlled vectorial electron transfer and photoelectrochemical applications of layered relay/photosensitizer-imprinted Au nanoparticle architectures on electrodes. Small 2016, 12, 1605–1614.

    Article  Google Scholar 

  19. Kong, L. J.; Pan, M. F.; Fang, G. Z.; He, X. L.; Yang, Y. K.; Dai, J.; Wang, S. Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens. Bioelectron. 2014, 51, 286–292.

    Article  Google Scholar 

  20. Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of low-temperature-imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121–43130.

    Article  Google Scholar 

  21. Yao, T.; Gu, X.; Li, T. F.; Li, J. G.; Li, J.; Zhao, Z.; Wang, J.; Qin, Y. C.; She, Y. X. Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Biosens. Bioelectron. 2016, 75, 96–100.

    Article  Google Scholar 

  22. Cennamo, N.; Donà, A.; Pallavicini, P.; D'Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and fivebranched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291–298.

    Article  Google Scholar 

  23. Ahmad, R.; Félidj, N.; Boubekeur-Lecaque, L.; Lau-Truong, S.; Gam-Derouich, S.; Decorse, P.; Lamouri, A.; Mangeney, C. Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid. Chem. Commun. 2015, 51, 9678–9681.

    Article  Google Scholar 

  24. Lv, Y. Q.; Qin, Y. T.; Svec, F.; Tan, T. W. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens. Bioelectron. 2016, 80, 433–441.

    Article  Google Scholar 

  25. Gültekin, A.; Ersöz, A.; Hür, D.; Sariözlü, N. Y.; Denizli, A.; Say, R. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Appl. Surf. Sci. 2009, 256, 142–148.

    Article  Google Scholar 

  26. Gültekin, A.; Ersöz, A.; Denizli, A.; Say, R. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sens. Actuators B Chem. 2012, 162, 153–158.

    Article  Google Scholar 

  27. Bompart, M.; De Wilde, Y.; Haupt, K. Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv. Mater. 2010, 22, 2343–2348.

    Article  Google Scholar 

  28. Xue, J. Q.; Li, D. W.; Qu, L. L.; Long, Y. T. Surfaceimprinted core-shell Au nanoparticles for selective detection of bisphenol a based on surface-enhanced Raman scattering. Anal. Chim. Acta 2013, 777, 57–62.

    Article  Google Scholar 

  29. Rauh, A.; Honold, T.; Karg, M. Seeded precipitation polymerization for the synthesis of gold-hydrogel core-shell particles: The role of surface functionalization and seed concentration. Colloid Polym. Sci. 2016, 294, 37–47.

    Article  Google Scholar 

  30. Shahar, T.; Tal, N.; Mandler, D. Molecularly imprinted polymer particles: Formation, characterization and application. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 495, 11–19.

    Article  Google Scholar 

  31. Zhang, X. X.; Fan, Y. F.; Tao, X. M.; Yick, K. L. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 2004, 88, 300–307.

    Article  Google Scholar 

  32. Rezaei, B.; Boroujeni, M. K.; Ensafi, A. A. Development of sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer. Sens. Actuators B Chem. 2016, 222, 849–856.

    Article  Google Scholar 

  33. Kou, X.; Lei, J. D.; Geng, L. Y.; Deng, H. Q.; Jiang, Q. Y.; Zhang, G. F.; Ma, G. H.; Su, Z. G. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization. J. Nanosci. Nanotechnol. 2012, 12, 7388–7394.

    Article  Google Scholar 

Download references

Acknowledgements

T. Shahar acknowledges the partial support by Teva Pharmaceutical Industries LTD. We are indebted to the Harvey M. Krueger Family Center for Nanoscience and Nanotechnology of the Hebrew University. Special thanks to Prof. Joel M. Harris from the University of Utah for his advice. This project is also partially supported by the Focal Technology Area through the Israel National Nanotechnology Initiative (INNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mandler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahar, T., Sicron, T. & Mandler, D. Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors. Nano Res. 10, 1056–1063 (2017). https://doi.org/10.1007/s12274-016-1366-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1366-5

Keywords

Navigation