Skip to main content
Log in

Preparation of a self-cleanable molecularly imprinted sensor based on surface-enhanced Raman spectroscopy for selective detection of R6G

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel molecularly imprinted polymers (MIPs) based on the technique of surface-enhanced Raman scattering (SERS) were successfully prepared. Firstly, ZnO nanorods were fabricated with Ag by reduction of Ag+ on the surface of the ZnO nanorods. Then, ZnO/Ag heterostructures were used as the substrate, rhodamine 6G was used as the template molecule, acrylamide was used as the functional monomer, ethylene glycol dimethacrylate was used as the cross-linker, and 2,2′-azobis(2-methylpropionitrile) was used as the initiator to prepare the ZnO/Ag MIPs (ZOA-MIPs). Through characterization analysis, it was proved that the novel ZOA-MIPs exhibited excellent SERS properties and selectivity. Under the optimal conditions, there was a good linear relationship (R 2 = 0.996) between the Raman signal (at 1654 cm-1) and the concentration of the templates, and the detection limit was 10-13 mol L-1. It was also proved that the ZOA-MIPs had the property of self-cleaning, resulting in good reusability. It is envisaged that the sensitivity of SERS coupled with the selectivity of MIPs could result in a promising chemosensor for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li HJ, Wei X, Zhang YF, Xu YQ, Lu K, Li CX, et al. Rapid and sensitive detection of hemoglobin with gold nanoparticles based fluorescence sensor in aqueous solution. J Alloys Compd. 2016;685:820–7.

    Article  CAS  Google Scholar 

  2. Qu YQ, Cheng R, Su Q, Duan XF. Plasmonic Enhancements of photocatalytic activity of Pt/N-Si/Ag photodiodes using Au/Ag core/shell nanorods. J Am Chem Soc. 2011;133:16730–3.

    Article  CAS  Google Scholar 

  3. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev. 2011;111:3669–712.

    Article  CAS  Google Scholar 

  4. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold Nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007;2:681–93.

    Article  CAS  Google Scholar 

  5. Fang Y, Seong NH, Dlott DD. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science. 2008;321:388–92.

    Article  CAS  Google Scholar 

  6. Wang YQ, Yan B, Chen LX. SERS tags novel optical nanoprobes for bioanalysis. Chem Rev. 2013;113:1391–428.

    Article  CAS  Google Scholar 

  7. Chen JM, Huang YJ, Kannan PL, Zhang L, Lin ZY, Zhang JW, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem. 2016;88:2149–55.

    Article  CAS  Google Scholar 

  8. Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem. 2009;394:1747–60.

    Article  CAS  Google Scholar 

  9. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 2010;464:392–5.

    Article  CAS  Google Scholar 

  10. Gutés A, Carraro C, Maboudian R. Silver Dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. J Am Chem Soc. 2010;132:1476–7.

    Article  Google Scholar 

  11. Wang L, Li H, Tian J, Sun X. Monodisperse, micrometer-scale, highly crystalline, nanotextured ag dendrites: rapid, largescale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces. 2010;2:2987–91.

    Article  CAS  Google Scholar 

  12. Ko H, Chang S, Tsukruk VV. Porous substrates for label free molecular level detection of nonresonant organic molecules. ACS Nano. 2009;3:181–8.

    Article  CAS  Google Scholar 

  13. Camden JP, Dieringer JA, Zhao J, Van Duyne RP. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res. 2008;41:1653–61.

    Article  CAS  Google Scholar 

  14. Wu Y, Dong N, Fu S, Fowlkes JD, Kondic L, Vincenti MA, et al. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays. ACS Appl Mater Interfaces. 2014;6:5835–43.

    Article  CAS  Google Scholar 

  15. Yang L, Yan B, Premasiri WR, Ziegler LD, Negro LD, Reinhard BM. Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates. Adv Funct Mater. 2010;20:2619–28.

    Article  CAS  Google Scholar 

  16. Zhou W, Yin BC, Ye BC. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate. Biosens Bioelectron. 2017;87:187–94.

    Article  CAS  Google Scholar 

  17. Ko H, Chang S, Tsukruk VV. Porous substrates for label free molecular level detection of nonresonant organic molecules. ACS Nano 2009;3:181–188.

  18. Zhao Y, Sun L, Xi M, Feng Q, Jiang CY, Fong H. Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces. 2014;6:5759–67.

    Article  CAS  Google Scholar 

  19. Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater. 2012;22:218–24.

    Article  Google Scholar 

  20. Chen T, Xing GZ, Zhang Z, Chen HY, Wu T. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology. 2008;19:17030–1.

    Google Scholar 

  21. Zang Y, He X, Li J, Yin J, Li K, Yue C, et al. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres. Nanoscale. 2013;5:574–80.

    Article  CAS  Google Scholar 

  22. Jiang X, Li XL, Jia XF, Li GZ, Wang X, Wang GY, et al. Surface-enhanced Raman scattering from synergistic contribution of metal and semiconductor in TiO2/MBA/Ag(Au) and Ag(Au)/MBA/TiO2 assemblies. J Phys Chem C. 2012;116:14650–5.

    Article  CAS  Google Scholar 

  23. Wang H, Ruan W, Zhang J, Yang B, Xu W, Zhao B, et al. Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J Raman Spectrosc. 2009;40:1072–7.

    Article  CAS  Google Scholar 

  24. Macias-Montero M, Borras A, Saghi Z, Espinos JP, Barranco A, Cotrino J, et al. Vertical and tilted AgNPs@ZnO nanorods by plasma-enhanced chemical vapour deposition. Nanotechnology. 2012;23:255–303.

    Article  Google Scholar 

  25. Morton SM, Jensen L. Understanding the molecule-surface chemical coupling in SERS. J Am Chem Soc. 2009;131:4090–8.

    Article  CAS  Google Scholar 

  26. Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. J Adv Funct Mater. 2008;18:2348–55.

    Article  CAS  Google Scholar 

  27. Cheng C, Yan B, Wang SM, Li X, Zhou W, Yu T, et al. Fabrication and SERS performance of silver-nanoparticle decorated Si/ZnO nanotrees in ordered arrays. J ACS Appl Mater Interfaces. 2010;2:1824–8.

    Article  CAS  Google Scholar 

  28. Li SJ, Ge Y, Piletsky SA, Turner APF. A zipper-like on/off-switchable molecularly imprinted polymer. J Adv Funct Mater. 2011;21:3344–9.

    Article  CAS  Google Scholar 

  29. Wu YL, Yan M, Cui JY, Yan YS, Li CX. A Multiple-functional Ag/SiO2/organic based biomimetic nanocomposite membrane for high-stability protein recognition and cell adhesion/detachment. J Adv Funct Mater. 2015;25:5823–32.

    Article  CAS  Google Scholar 

  30. Hu Y, Feng SL, Gao F, Eunice CY, Li C, Grant E, et al. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. J Food Chem. 2014;176:123–9.

    Article  Google Scholar 

  31. Kamra T, Zhou TC, Montelius L, Schnadt J, Ye L. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. J Anal Chem. 2015;87:5056–61.

    Article  CAS  Google Scholar 

  32. Kim J, Yong KJ. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C. 2011;115:7218–24.

    Article  CAS  Google Scholar 

  33. Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004;120:357–66.

    Article  CAS  Google Scholar 

  34. Canamares MV, GarciaRamos JV, GomezVarga JD, Domingo C, SanchezCortes S. Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir. 2005;21:8546–53.

    Article  CAS  Google Scholar 

  35. Gao L, Li XY, Zhang Q, Dai JD, Wei X, Song ZL, et al. Molecularly imprinted polymer microspheres for optical measurement of ultra trace nonfluorescent cyhalothrin in honey. J Food Chem. 2014;156:1–6.

    Article  CAS  Google Scholar 

  36. Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. J Anal Chim Acta. 2007;584:112–21.

    Article  CAS  Google Scholar 

  37. Barakat N, Woo AM, Kanjwal KD, Choi MA, Khil KE, Kim MS. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique. Langmuir J Am Chem Soc. 2008;24:11982–7.

    CAS  Google Scholar 

  38. Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. J Adv Funct Mater. 2012;22:218–24.

    Article  Google Scholar 

  39. Li DY, He XW, Chen Y, Li WY, Zhang YK. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin. J ACS Appl Mater Interfaces. 2013;5:12609–16.

    Article  CAS  Google Scholar 

  40. Chen Y, Donoghue MBO, Huang YF, Kang H, Phillips JA, Chen X, et al. A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc. 2010;132:16559–70.

    Article  CAS  Google Scholar 

  41. Yoshimi Y, Sato K, Ohshima M, Piletska E. Application of the “gate effect” of a molecularly imprinted polymer grafted on an electrode for the real-time sensing of heparin in blood. J Analyst. 2013;138:5121–8.

    Article  CAS  Google Scholar 

  42. Yoshimi Y, Narimatsu A, Nakayama K, Sekine S, Hattori K, Sakai K. Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J Artif Organs. 2009;12:264–70.

    Article  CAS  Google Scholar 

  43. Guo Y, Kang LL, Chen SN, Li X. High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Phys Chem Chem Phys. 2015;17:21343–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (nos 21277063, 21407057, 21407064, 21507045, and 21576111), the National Basic Research Program of China (973 Program, 2012CB821500), the Natural Science Foundation of Jiangsu Province (nos BK20140534 and BK20140535), the National Postdoctoral Science Foundation (no. 2014 M561595), and the Postdoctoral Science Foundation funded project of Jiangsu Province (no. 1401108C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, Z., Wang, X. et al. Preparation of a self-cleanable molecularly imprinted sensor based on surface-enhanced Raman spectroscopy for selective detection of R6G. Anal Bioanal Chem 409, 4627–4635 (2017). https://doi.org/10.1007/s00216-017-0410-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0410-y

Keywords

Navigation