Skip to main content
Log in

In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite one-dimensional (1D) semiconductor nanostructure arrays attracting increasing attention due to their many advantages, highly ordered TiO2 nanorod arrays (TiO2 NR) are rarely grown in situ on Ti substrates. Herein, a feasible method to fabricate TiO2 NRs on Ti substrates by using a through-mask anodization process is reported. Self-ordered anodic aluminum oxide (AAO) overlaid on Ti substrate was used as a nanotemplate to induce the growth of TiO2 NRs. The NR length and diameter could be controlled by adjusting anodization parameters such as electrochemical anodization voltage, anodization time and temperature, and electrolyte composition. Furthermore, according to the proposed NR formation mechanism, the anodized Ti ions migrate and deposit in the AAO nanochannels to form Ti(OH)4 or amorphous TiO2 NRs under electric field, owing to the confinement effect of the template. Photoelectrochemical tests indicated that, after hydrogenation, the TiO2 NRs presented higher photocurrent density under simulated sunlight and visible light illuminations, suggesting their potential use in photoelectrochemical water splitting, photocatalysis, solar cells, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  2. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

    Article  Google Scholar 

  3. Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

    Article  Google Scholar 

  4. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

    Article  Google Scholar 

  5. Zhang, P.; Zhang, J. J.; Gong, J. L. Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 2014, 43, 4395–4422.

    Article  Google Scholar 

  6. Zhen, C.; Chen, R. Z.; Wang, L. Z.; Liu, G.; Cheng, H.-M. Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. J. Mater. Chem. A 2016, 4, 2783–2800.

    Article  Google Scholar 

  7. Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  Google Scholar 

  8. Li, K.; Zeng, X. Q.; Gao, S. M.; Ma, L.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. Ultrasonicassisted pyrolyzation fabrication of reduced SnO2–x /g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 2016, 9, 1969–1982.

    Article  Google Scholar 

  9. Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939.

    Article  Google Scholar 

  10. Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

    Article  Google Scholar 

  11. Li, S.; Qiu, J. X.; Ling, M.; Peng, F.; Wood, B.; Zhang, S. Q. Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interfaces 2013, 5, 11129–11135.

    Article  Google Scholar 

  12. Su, F. L.; Wang, T.; Lv, R.; Zhang, J. J.; Zhang, P.; Lu, J. W.; Gong, J. L. Dendritic Au/TiO2nanorod arrays for visiblelight driven photoelectrochemical water splitting. Nanoscale 2013, 5, 9001–9009.

    Article  Google Scholar 

  13. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195.

    Article  Google Scholar 

  14. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. A review on highly ordered,vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater.Sol. Cells 2006, 90, 2011–2075.

    Article  Google Scholar 

  15. Kang, Q.; Cao, J. Y.; Zhang, Y. J.; Liu, L. Q.; Xu, H.; Ye, J. H. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 2013, 1, 5766–5774.

    Article  Google Scholar 

  16. Yan, M. C.; Chen, F.; Zhang, J. L.; Anpo, M. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 2005, 109, 8673–8678.

    Article  Google Scholar 

  17. Liu, H. Y.; Joo, J. B.; Dahl, M.; Fu, L. S.; Zeng, Z. Z.; Yin, Y. D. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.

    Article  Google Scholar 

  18. Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H. One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346–9384.

    Article  Google Scholar 

  19. Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi, S.; Katagiri, K.; Koumoto, K. Sol–gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater. Chem. Phys. 2009, 113, 856–860.

    Article  Google Scholar 

  20. Cui, H. L.; Zhao, W.; Yang, C. Y.; Yin, H.; Lin, T. Q.; Shan, Y. F.; Xie, Y.; Gu, H.; Huang, F. Q. Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2014, 2, 8612–8616.

    Article  Google Scholar 

  21. Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

    Article  Google Scholar 

  22. Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454.

    Article  Google Scholar 

  23. Yun, H.; Lin, C. J.; Li, J.; Wang, J. R.; Chen, H. B. Lowtemperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection. Appl. Surf. Sci. 2008, 255, 2113–2117.

    Article  Google Scholar 

  24. Lin, Z.-H.; Xie, Y. N.; Yang, Y.; Wang, S. H.; Zhu, G.; Wang, Z. L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 2013, 7, 4554–4560.

    Article  Google Scholar 

  25. Rahman, M. A.; Bazargan, S.; Srivastava, S.; Wang, X. Y.; Abd-Ellah, M.; Thomas, J. P.; Heinig, N. F.; Pradhan, D.; Leung, K. T. Defect-rich decorated TiO2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light. Energy Environ. Sci. 2015, 8, 3363–3373.

    Article  Google Scholar 

  26. Xu, Y. F.; Zhang, C.; Zhang, L. X.; Zhang, X. H; Yao, H. L.; Shi, J. L. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410–2417.

    Article  Google Scholar 

  27. Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 2013, 25, 125–131.

    Article  Google Scholar 

  28. Chang, Y. H.; Lin, H. W.; Chen, C. Growth mechanism of self-assembled TiO2 nanorod arrays on Si substrates fabricated by Ti anodization. J. Electrochem. Soc. 2012,159, D512–D517.

    Article  Google Scholar 

  29. Wang, D. A.; Yu, B.; Wang, C. W.; Zhou, F.; Liu, W. M. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 2009, 21, 1964–1967.

    Article  Google Scholar 

  30. Li, Y. B.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J. M.; Ma, Y. H.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorodphotoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 2013, 4, 2566.

    Google Scholar 

  31. Wang, D. A.; Zhang, L. B.; Lee, W.; Knez, M.; Liu, L. F. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays. Small 2013, 9, 1025–1029.

    Article  Google Scholar 

  32. Ruan, C. M.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 2005, 109, 15754–15759.

    Article  Google Scholar 

  33. Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A. Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J. Phys. Chem. C 2007, 111, 21–26.

    Article  Google Scholar 

  34. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 2006, 110, 16179–16184.

    Article  Google Scholar 

  35. Mozalev, A.; Khatko, V.; Bittencourt, C.; Hassel, A. W.; Gorokh, G.; Llobet, E.; Correig, X. Nanostructured columnlike tungsten oxide film by anodizing Al/W/Ti layers on Si. Chem. Mater. 2008, 20, 6482–6493.

    Article  Google Scholar 

  36. Chu, S. Z.; Inoue, S.; Wada, K.; Hishita, S.; Kurashima, K. A new electrochemical lithography: Fabrication of selforganized titania nanostructures on glass by combined anodization. J. Electrochem. Soc. 2005, 152, B116–B124.

    Google Scholar 

  37. Wang, D. A.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. M. TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance. Chem. Mater. 2009, 21, 1198–1206.

    Article  Google Scholar 

  38. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–50.

    Article  Google Scholar 

  39. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: Anovel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of the National Natural Science Foundation of China (Nos. 21303227, 21573259, and 51403220), Qingdao science and technology plan application foundation research project (No. 14-2-4-60-JCH) and the “Hundred Talents Program” of Chinese Academy of Sciences (D. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoai Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Rahman, Z.U., Wei, N. et al. In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting. Nano Res. 10, 1021–1032 (2017). https://doi.org/10.1007/s12274-016-1361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1361-x

Keywords

Navigation