Skip to main content
Log in

Bimetallic PdCo catalyst for selective direct formylation of amines by carbon monoxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A highly efficient and selective bimetallic Pd0.88Co0.12 nanoparticle catalyst was developed for the direct N-formylation of amines by carbon monoxide. This catalyst is compatible with a wide range of substrates, affording various synthetically useful formamides under practical and mild reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson, A.; Meth-Cohn, O. A new short and efficient strategy for the synthesis of quinolone antibiotics. J. Chem. Soc., Chem. Commun. 1995, 1319.

    Google Scholar 

  2. Chen, B. C.; Bendarz, M. S.; Zhao, R. L.; Sundeen, J. E.; Chen, P.; Shen, Z. Q.; Skoumbourdis, A. P.; Barrish, J. C. A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Lett. 2000, 41, 5453–5456.

    Article  Google Scholar 

  3. Kakehi, A.; Ito, S.; Hayashi, S.; Fujii, T. Preparation of new nitrogen-bridged heterocycles. 40. Synthesis of 1,4-dihydropyrido[2,3-b]indolizin-4-one derivatives. Bull. Chem. Soc. Jpn. 1995, 68, 3573–3580.

    Article  Google Scholar 

  4. Lohray, B. B.; Baskaran, S.; Rao, B. S.; Reddy, B. Y.; Rao, I. N. A short synthesis of oxazolidinone derivatives linezolid and eperezolid: A new class of antibacterials. Tetrahedron Lett. 1999, 40, 4855–4856.

  5. Pettit, G.; Kalnins, M.; Liu, T.; Thomas, E.; Parent, K. Notes—potential cancerocidal agents. III. Formanilides. J. Org. Chem. 1961, 26, 2563–2566.

    Article  Google Scholar 

  6. Kobayashi, S.; Nishio, K. Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. J. Org. Chem. 1994, 59, 6620–6628.

    Article  Google Scholar 

  7. Kobayashi, S.; Yasuda, M.; Hachiya, I. Trichlorosilanedimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chem. Lett. 1996, 25, 407–408.

    Google Scholar 

  8. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Asymmetric allylation with chiral formamide catalysts. Tetrahedron 1999, 55, 977–988.

    Article  Google Scholar 

  9. Kraus, M. A. The formylation of aliphatic amines by dimethylformamide. Synthesis 1973, 361–362.

    Google Scholar 

  10. Kizuka, H.; Elmaleh, D. R. Selective monomethylation of the primary amine function using [11C]CH3I and the N-trifluoroacetyl derivative: Preparation of N-[11Cmethyl] chlorphentermine. Nucl. Med. Biol. 1993, 20, 239–242.

    Article  Google Scholar 

  11. Downie, I. M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride. Tetrahedron 1993, 49, 4015–4034.

    Article  Google Scholar 

  12. Hartinez, J.; Laur, J. Active esters of formic acid as useful formylating agents: Improvements in the synthesis of formyl-amino acid esters, N-a-formyl-Met-Leu-Phe-OH, and formyl-Met-Lys-Pro-Arg, a phagocytosis stimulating peptide. Synthesis 1982, 979–981.

    Google Scholar 

  13. Joulain, D. The composition of the headspace from fragrant flowers: Further results. Flavour Fragr. J. 1987, 2, 149–155.

    Article  Google Scholar 

  14. Han, Y.; Cai, L. S. An efficient and convenient synthesis of formamidines. Tetrahedron Lett. 1997, 38, 5423–5426.

    Article  Google Scholar 

  15. Sheehan, J. C.; Yang, D. D. H. The use of N-formylamino acids in peptide synthesis. J. Am. Chem. Soc. 1958, 80, 1154–1158.

    Article  Google Scholar 

  16. Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Lett. 2000, 41, 9149–9151.

    Article  Google Scholar 

  17. Bandgar, B. P.; Kinkar, S. N.; Chobe, S. S.; Mandawad, G. G.; Yemul, O. S.; Dawane, B. S. Clean and green approach for N-formylation of amines using formic acid under neat reaction condition. Arch. Appl. Sci. Res. 2011, 3, 246–251.

    Google Scholar 

  18. Deutsch, J.; Eckelt, R.; Köckritz, A.; Martin, A. Catalytic reaction of methyl formate with amines to formamides. Tetrahedron 2009, 65, 10365–10369.

    Article  Google Scholar 

  19. Das, V. K.; Devi, R. R.; Raul, P. K.; Thakur, A. J. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: A novel, practical and convenient “NOSE” approach. Green Chem. 2012, 14, 847–854.

    Article  Google Scholar 

  20. Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids: Hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J. Am. Chem. Soc. 1996, 118, 344–355.

    Article  Google Scholar 

  21. Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew. Chem., Int. Ed. 2010, 49, 9777–9780.

    Article  Google Scholar 

  22. Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. Recycling of carbon and silicon wastes: Room temperature formylation of N–H bonds using carbon dioxide and polymethylhydrosiloxane. J. Am. Chem. Soc. 2012, 134, 2934–2937.

    Article  Google Scholar 

  23. Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T. Reductive functionalization of CO2 with amines: An entry to formamide, formamidine and methylamine derivatives. Green Chem. 2015, 17, 157–168.

    Article  Google Scholar 

  24. Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Thiazolium carbene catalysts for the fixation of CO2 onto amines. Chem. Commun. 2016, 52, 2497–2500.

    Article  Google Scholar 

  25. Choi, Y. S.; Shim, Y. N.; Lee, J.; Yoon, J. H.; Hong, C. S.; Cheong, M.; Kim, H. S.; Jang, H. G.; Lee, J. S. Ionic liquids as benign catalysts for the carbonylation of amines to formamides. Appl. Catal. A-Gen. 2011, 404, 87–92.

    Article  Google Scholar 

  26. Süss-Fink, G.; Langenbahn, M.; Jenke, T. Rutheniumcluster als Katalysatoren für die Carbonylierung von cyclischen Aminen. J. Organomet. Chem. 1989, 368, 103–109.

    Article  Google Scholar 

  27. Li, W. F.; Wu, X. F. A practical and general base-catalyzed carbonylation of amines for the synthesis of N-formamides. Chem.—Eur. J. 2015, 21, 14943–14948.

    Article  Google Scholar 

  28. Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. Carbon nanotube–gold nanohybrid catalyzed Nformylation of amines by using aqueous formaldehyde. ChemCatChem 2014, 6, 2201–2205.

    Article  Google Scholar 

  29. Saidi, O.; Bamford, M. J.; Blacker, A. J.; Lynch, J.; Marsden, S. P.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Iridium-catalyzed formylation of amines with paraformaldehyde. Tetrahedron Lett. 2010, 51, 5804–5806.

    Article  Google Scholar 

  30. Ortega, N.; Richter, C.; Glorius, F. N-formylation of amines by methanol activation. Org. Lett. 2013, 15, 1776–1779.

    Article  Google Scholar 

  31. Tanaka, S.; Minato, T.; Ito, E.; Hara, M.; Kim, Y.; Yamamoto, Y.; Asao, N. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: Highly efficient synthesis of formamides. Chem.—Eur. J. 2013, 19, 11832–11836.

    Article  Google Scholar 

  32. Kim, Y. J.; Lee, J. W.; Lee, H. J.; Zhang, S. Y.; Lee, J. S.; Cheong, M.; Kim, H. S. K3PO4-catalyzed carbonylation of amines to formamides. Appl. Catal. A: Gen. 2015, 506, 126–133.

    Article  Google Scholar 

  33. Cui, X. J.; Zhang, Y.; Deng, Y. Q.; Shi, F. Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst. Chem. Commun. 2014, 50, 189–191.

    Article  Google Scholar 

  34. Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

    Article  Google Scholar 

  35. Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608–612.

    Article  Google Scholar 

  36. Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

    Article  Google Scholar 

  37. Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

    Article  Google Scholar 

  38. Liu, D.; Guo, Q. H.; Hou, H. Q.; Niwa, O.; You, T. Y. PdxCoy nanoparticle/carbon nanofiber composites with enhanced electrocatalytic properties. ACS Catal. 2014, 4, 1825–1829.

    Article  Google Scholar 

  39. Mora-Hernández, J. M.; Ezeta-Mejía, A.; Reza-San Germán, C.; Citalán-Cigarroa, S.; Arce-Estrada, E. M. Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres. J. Appl. Electrochem. 2014, 44, 1307–1315.

    Article  Google Scholar 

  40. Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

    Article  Google Scholar 

  41. Meng, M.; Lin, P. Y.; Fu, Y. L. The catalytic removal of CO and NO over Co-Pt (Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations. Catal. Lett. 1997, 48, 213–222.

    Article  Google Scholar 

  42. Bernhard, P.; Ziethen, C.; Ohr, R.; Hilgers, H.; Schönhense, G. Investigations of the corrosion protection of ultrathin a-C and a-C:N overcoats for magnetic storage devices. Surf. Coat. Technol. 2004, 180–181, 621–626.

    Article  Google Scholar 

  43. Wang, Y. F.; Xu, L. M.; Yu, R. C.; Chen, J. H.; Yang, Z. CoBr2–TMTU–zinc catalysed-Pauson–Khand reaction. Chem. Commun. 2012, 48, 8183–8185.

    Article  Google Scholar 

  44. Tang, Y. F.; Deng, L. J.; Zhang, Y. D.; Dong, G. B.; Chen, J. H.; Yang, Z. Tetramethyl thiourea/Co2(CO)8-catalyzed Pauson-Khand reaction under balloon pressure of CO.Org. Lett. 2005, 7, 593–595.

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the China Ministry of Science and Technology (No. 2016YFA0202801), National Natural Science Foundation of China (No. 21371107), Tsinghua-Peking Joint Centers for Life Sciences and CAMS Initiative for Innovative Medicine (No. 2016-I2M-3-014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifang Guo or Wei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Mao, J., Shen, R. et al. Bimetallic PdCo catalyst for selective direct formylation of amines by carbon monoxide. Nano Res. 10, 890–896 (2017). https://doi.org/10.1007/s12274-016-1344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1344-y

Keywords

Navigation