Skip to main content
Log in

New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysts are of great interest and importance for designing new high-performance low-cost catalysts. We investigated CO oxidation catalyzed by single gold atoms supported on thoria (Au/ThO2) and doped ThO2 using density functional theory with Hubbard-type on-site Coulomb interaction (DFT + U). The calculation results show that the Au-doped ThO2(111) catalyst exhibits remarkable catalytic activity for CO oxidation via the Eley–Rideal mechanism in three steps, where the rate-determining step is decomposition of the OCOO* intermediate with an energy barrier of 0.58 eV. Moreover, our results also reveal a new mechanism of CO oxidation on a gold adatom supported by ThO2(111), where O2 is adsorbed only at the Th site on the surface, and the gas-phase CO then reacts directly with the activated O2* to form CO2, which is the rate-limiting step, with a barrier of 0.46 eV. It is found that CO oxidation can occur without CO and O2 coadsorption on Au, which was previously considered a key intermediate. Therefore, these results provide new insights into CO oxidation on isolated gold atoms supported by the 5f-element compound ThO2(111). This mechanism can help clarify the catalytic cycle of CO oxidation, support the design of high-performance low-cost catalysts, and elucidate the redox properties of actinide oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M. Firstprinciples calculations of PuOx . Science 2003, 301, 498–501.

    Article  Google Scholar 

  2. Korzhavyi, P. A.; Vitos, L.; Andersson, D. A.; Johansson, B. Oxidation of plutonium dioxide. Nat. Mater. 2004, 3, 225–228.

    Article  Google Scholar 

  3. Haschke, J. M.; Allen, T. H.; Morales, L. A. Reaction of plutonium dioxide with water: Formation and properties of PuOx . Science 2000, 287, 285–287.

    Article  Google Scholar 

  4. Wickleder, M. S.; Fourest, B.; Dorhout, P. K. Thorium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L.; Edelstein, N.; Fuger, J., Eds.; Springer: Netherlands, 2006; pp 52–160.

    Chapter  Google Scholar 

  5. Katz, J. J.; Morss, L. R.; Edelstein, N. M.; Fuger, J. Introduction. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.; Edelstein, N.; Fuger, J.; Katz, J. J., Eds.; Springer: Netherlands, 2011; pp 1–17.

    Google Scholar 

  6. Hania, P. R.; Klaassen, F. C. 3. 04 - Thorium oxide fuel. In Comprehensive Nuclear Materials; Konings, R. J. M., Ed.; Elsevier: Oxford, 2012; pp 87–108.

    Chapter  Google Scholar 

  7. Kandan, R.; Babu, R.; Manikandan, P.; Venkata Krishnan, R.; Nagarajan, K. Calorimetric measurements on (U, Th)O2 solid solutions. J. Nucl. Mater. 2009, 384, 231–235.

    Article  Google Scholar 

  8. Tabakova, T.; Idakiev, V.; Tenchev, K.; Boccuzzi, F.; Manzoli, M.; Chiorino, A. Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications. Appl. Catal. B 2006, 63, 94–103.

    Article  Google Scholar 

  9. Jacobs, G.; Patterson, P. M.; Graham, U. M.; Crawford, A. C.; Dozier, A.; Davis, B. H. Catalytic links among the water–gas shift, water-assisted formic acid decomposition, and methanol steam reforming reactions over Pt-promoted thoria. J. Catal. 2005, 235, 79–91.

    Article  Google Scholar 

  10. Jacobs, G.; Crawford, A.; Williams, L.; Patterson, P. M.; Davis, B. H. Low temperature water–gas shift: Comparison of thoria and ceria catalysts. Appl. Catal. A 2004, 267, 27–33.

    Article  Google Scholar 

  11. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.

    Article  Google Scholar 

  12. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

    Article  Google Scholar 

  13. Liu, Z.-P.; Jenkins, S. J.; King, D. A. Role of nanostructured dual-oxide supports in enhanced catalytic activity: Theory of CO oxidation over Au/IrO2/TiO2. Phys. Rev. Lett. 2004, 93, 156102.

    Article  Google Scholar 

  14. Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

    Article  Google Scholar 

  15. Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts—“Inert” and “active” support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122.

    Article  Google Scholar 

  16. Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J.-M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–407.

    Article  Google Scholar 

  17. Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.

    Article  Google Scholar 

  18. Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 2004, 69, 155424.

    Article  Google Scholar 

  19. Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Häkkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 1999, 103, 9573–9578.

    Article  Google Scholar 

  20. Zhang, X.; Wang, H.; Xu, B.-Q. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. J. Phys. Chem. B 2005, 109, 9678–9683.

    Article  Google Scholar 

  21. Wang, C.-M.; Fan, K.-N.; Liu, Z.-P. Origin of oxide sensitivity in gold-based catalysts: A first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. J. Am. Chem. Soc. 2007, 129, 2642–2647.

    Article  Google Scholar 

  22. Comotti, M.; Li, W.-C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

    Article  Google Scholar 

  23. Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 2006, 38, 215–218.

    Article  Google Scholar 

  24. Uchiyama, T.; Yoshida, H.; Kuwauchi, Y.; Ichikawa, S.; Shimada, S.; Haruta, M.; Takeda, S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angew. Chem. 2011, 123, 10339–10342.

    Article  Google Scholar 

  25. Venezia, A. M.; Pantaleo, G.; Longo, A.; Di Carlo, G.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 2005, 109, 2821–2827.

    Article  Google Scholar 

  26. Huang, X.-S.; Sun, H.; Wang, L.-C.; Liu, Y.-M.; Fan, K.-N.; Cao, Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. B 2009, 90, 224–232.

    Article  Google Scholar 

  27. Kim, H. Y.; Lee, H. M.; Henkelman, G. CO oxidation mechanism on CeO2-supported Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 1560–1570.

    Article  Google Scholar 

  28. Chen, S. L.; Luo, L. F.; Jiang, Z. Q.; Huang, W. X. Sizedependent reaction pathways of low-temperature CO oxidation on Au/CeO2 catalysts. ACS Catal. 2015, 5, 1653–1662.

    Article  Google Scholar 

  29. Haruta, M. Spiers memorial lecture: Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011, 152, 11–32.

    Article  Google Scholar 

  30. Meyer, R.; Lemire, C.; Shaikhutdinov, S. K.; Freund, H. J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124.

    Article  Google Scholar 

  31. Grunwaldt, J.-D.; Kiener, C.; Wögerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids. J. Catal. 1999, 181, 223–232.

    Article  Google Scholar 

  32. Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232–235.

    Article  Google Scholar 

  33. Bond, G.; Thompson, D. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50.

    Article  Google Scholar 

  34. Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388.

    Article  Google Scholar 

  35. Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

    Article  Google Scholar 

  36. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  37. Yang, X.-F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  Google Scholar 

  38. Li, F. Y.; Li, Y. F.; Zeng, X. C.; Chen, Z. F. Exploration of High-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.

    Article  Google Scholar 

  39. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  Google Scholar 

  40. Fang, H.-C.; Li, Z. H.; Fan, K.-N. CO oxidation catalyzed by a single gold atom: Benchmark calculations and the performance of DFT methods. Phys. Chem. Chem. Phys. 2011, 13, 13358–13369.

    Article  Google Scholar 

  41. Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

    Article  Google Scholar 

  42. Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

    Article  Google Scholar 

  43. Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

    Article  Google Scholar 

  44. Novotný, Z.; Argentero, G.; Wang, Z. M.; Schmid, M.; Diebold, U.; Parkinson, G. S. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 2012, 108, 216103.

    Article  Google Scholar 

  45. Abbet, S.; Heiz, U.; Häkkinen, H.; Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 2001, 86, 5950–5953.

    Article  Google Scholar 

  46. Liang, J.-X.; Lin, J.; Yang, X.-F.; Wang, A.-Q.; Qiao, B.-T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.

    Article  Google Scholar 

  47. Liang, J.-X.; Yang, X.-F.; Wang, A.-Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol., in press, DOI: 10.1039/C6CY00672H.

  48. Qiao, B. T.; Liang, J.-X.; Wang, A. Q.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  Google Scholar 

  49. Qiao, B. T.; Liu, J. X.; Wang, Y.-G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Y. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

    Article  Google Scholar 

  50. Wang, Y.-G.; Mei, D. H.; Glezakou, V.-A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

    Article  Google Scholar 

  51. Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

    Article  Google Scholar 

  52. Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxidesupported gold. J. Catal. 2006, 242, 71–81.

    Article  Google Scholar 

  53. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

    Article  Google Scholar 

  54. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  55. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  56. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

    Article  Google Scholar 

  57. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  Google Scholar 

  58. Xiao, H. Y.; Weber, W. J. Oxygen vacancy formation and migration in CexTh1–x O2 solid solution. J. Phys. Chem. B 2011, 115, 6524–6533.

    Article  Google Scholar 

  59. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  60. Feynman, R. P. Forces in molecules. Phys. Rev. 1939, 56, 340–343.

    Article  Google Scholar 

  61. Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; World Scientific Publishing: Singapore, 1998; pp 385–404.

    Chapter  Google Scholar 

  62. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  Google Scholar 

  63. Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

    Article  Google Scholar 

  64. Staun Olsen, J.; Gerward, L.; Kanchana, V.; Vaitheeswaran, G. The bulk modulus of ThO2—An experimental and theoretical study. J. Alloys Compd. 2004, 381, 37–40.

    Article  Google Scholar 

  65. Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Redox properties of gold-substituted zirconia surfaces. J. Mater. Chem. 2009, 19, 710–717.

    Article  Google Scholar 

  66. Carrasco, J.; Lopez, N.; Illas, F.; Freund, H.-J. Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. J. Chem. Phys. 2006, 125, 074711.

    Article  Google Scholar 

  67. Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 2007, 62, 219–270.

    Article  Google Scholar 

  68. Chauke, H. R.; Murovhi, P.; Ngoepe, P. E.; de Leeuw, N. H.; Grau-Crespo, R. Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J. Phys. Chem. C 2010, 114, 15403–15409.

    Article  Google Scholar 

  69. Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.

    Article  Google Scholar 

  70. Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

    Article  Google Scholar 

  71. Wang, H.-F.; Li, H.-Y.; Gong, X.-Q.; Guo, Y.-L.; Lu, G.-Z.; Hu, P. Oxygen vacancy formation in CeO2 and Ce1–x ZrxO2 solid solutions: Electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 2012, 14, 16521–16535.

    Article  Google Scholar 

  72. Tang, Y.; Zhao, S.; Long, B.; Liu, J.-C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514–17526.

    Article  Google Scholar 

  73. Nilius, N.; Freund, H.-J. Activating nonreducible oxides via doping. Acc. Chem. Res. 2015, 48, 1532–1539.

    Article  Google Scholar 

  74. McFarland, E. W.; Metiu, H. Catalysis by doped oxides. Chem. Rev. 2013, 113, 4391–4427.

    Article  Google Scholar 

  75. Nolan, M.; Verdugo, V. S.; Metiu, H. Vacancy formation and CO adsorption on gold-doped ceria surfaces. Surf. Sci. 2008, 602, 2734–2742.

    Article  Google Scholar 

  76. Shapovalov, V.; Metiu, H. Catalysis by doped oxides: CO oxidation by AuxCe1–x O2. J. Catal. 2007, 245, 205–214.

    Article  Google Scholar 

  77. Chrétien, S.; Metiu, H. Density functional study of the CO oxidation on a doped rutile TiO2(110): Effect of ionic Au in catalysis. Catal. Lett. 2006, 107, 143–147.

    Article  Google Scholar 

  78. Chen, H.-T. First-principles study of CO adsorption and oxidation on Ru-doped CeO2(111) surface. J. Phys. Chem. C 2012, 116, 6239–6246.

    Article  Google Scholar 

  79. Chen, H.-T.; Chang, J.-G. Computational investigation of CO adsorption and oxidation on iron-modified cerium oxide. J. Phys. Chem. C 2011, 115, 14745–14753.

    Article  Google Scholar 

  80. Hsu, L.-C.; Tsai, M.-K.; Lu, Y.-H.; Chen, H.-T. Computational investigation of CO adsorption and oxidation on Mn/CeO2(111) surface. J. Phys. Chem. C 2013, 117, 433–441.

    Article  Google Scholar 

  81. Liu, J.; Liu, B.; Fang, Y.; Zhao, Z.; Wei, Y. C.; Gong, X.-Q.; Xu, C. M.; Duan, A. J.; Jiang, G. Y. Preparation, characterization and origin of highly active and thermally stable Pd–Ce0.8Zr0.2O2 catalysts via sol-evaporation induced self-assembly method. Environ. Sci. Technol. 2014, 48, 12403–12410.

    Article  Google Scholar 

  82. Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Hun Kwak, J.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

    Article  Google Scholar 

  83. Chen, H.-T.; Chang, J.-G.; Chen, H.-L.; Ju, S.-P. Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: A DFT + U study. J. Comput. Chem. 2009, 30, 2433–2442.

    Article  Google Scholar 

  84. Widmann, D.; Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 2014, 47, 740–749.

    Article  Google Scholar 

  85. Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739.

    Article  Google Scholar 

  86. Wang, J.; McEntee, M.; Tang, W. J.; Neurock, M.; Baddorf, A. P.; Maksymovych, P.; Yates, J. T., Jr. Formation, migration, and reactivity of Au–CO complexes on gold surfaces. J. Am. Chem. Soc. 2016, 138, 1518–1526.

    Article  Google Scholar 

  87. Liu, Z.-P.; Gong, X.-Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett. 2003, 91, 266102.

    Article  Google Scholar 

  88. Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

    Article  Google Scholar 

  89. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192.

    Article  Google Scholar 

  90. Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 1997, 44, 83–87.

    Article  Google Scholar 

  91. Choudhary, T. V.; Sivadinarayana, C.; Chusuei, C. C.; Datye, A. K.; Fackler, J. P., Jr.; Goodman, D. W. CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex. J. Catal. 2002, 207, 247–255.

    Article  Google Scholar 

  92. Hernández, N. C.; Sanz, J. F.; Rodriguez, J. A. Unravelling the origin of the high-catalytic activity of supported Au: A density-functional theory-based interpretation. J. Am. Chem. Soc. 2006, 128, 15600–15601.

    Article  Google Scholar 

  93. Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z. F.; Zeng, X. C. CO oxidation on TiO2(110) supported subnanometer gold clusters: Size and shape effects. J. Am. Chem. Soc. 2013, 135, 19336–19346.

    Article  Google Scholar 

  94. Liu, Z.-P.; Hu, P.; Alavi, A. Catalytic role of gold in gold-based catalysts: A density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 2002, 124, 14770–14779.

    Article  Google Scholar 

  95. Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and CO induced O–O scission. J. Am. Chem. Soc. 2013, 135, 2583–2595.

    Article  Google Scholar 

  96. Wang, Y.-G.; Yoon, Y.; Glezakou, V.-A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

    Article  Google Scholar 

  97. Wang, Y.-G.; Cantu, D.-C.; Lee, M.-S.; Li, J.; Glezakou, V.-A.; Rousseau, R. CO oxidation on Au/TiO2: Conditiondependent active sites and mechanistic pathways. J. Am. Chem. Soc., in press, DOI: 10.1021/jacs.6b04187.

  98. Chang, C.-R.; Wang, Y.-G.; Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 2011, 4, 131–142.

    Article  Google Scholar 

  99. Chang, C.-R.; Huang, Z.-Q.; Li, J. Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. Nano Res. 2015, 8, 3737–3748.

    Article  Google Scholar 

  100. Chang, C.-R.; Huang, Z.-Q.; Li, J. The promotional role of water in heterogeneous catalysis: Mechanism insights from computational modeling. WIREs Comput. Mol. Sci., in press, DOI: 10.1002/wcms.1272.

  101. Grau-Crespo, R.; Hernández, N. C.; Sanz, J. F.; de Leeuw, N. H. Theoretical investigation of the deposition of Cu, Ag, and Au atoms on the ZrO2(111) surface. J. Phys. Chem. C 2007, 111, 10448–10454.

    Article  Google Scholar 

  102. Ghosh, P.; Farnesi Camellone, M.; Fabris, S. Fluxionality of Au clusters at ceria surfaces during CO oxidation: Relationships among reactivity, size, cohesion, and surface defects from DFT simulations. J. Phys. Chem. Lett. 2013, 4, 2256–2263.

    Article  Google Scholar 

  103. Pillay, D.; Hwang, G. S. Growth and structure of small gold particles on rutile TiO2(110). Phys. Rev. B 2005, 72, 205422.

    Article  Google Scholar 

  104. Vijay, A.; Mills, G.; Metiu, H. Adsorption of gold on stoichiometric and reduced rutile TiO2(110) surfaces. J. Chem. Phys. 2003, 118, 6536–6551.

    Article  Google Scholar 

  105. Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T., Jr. Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc. Chem. Res. 2014, 47, 805–815.

    Article  Google Scholar 

  106. Green, I. X.; Tang, W. J.; McEntee, M.; Neurock, M.; Yates, J. T., Jr. Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J. Am. Chem. Soc. 2012, 134, 12717–12723.

    Article  Google Scholar 

  107. Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 2008, 260, 351–357.

    Article  Google Scholar 

  108. Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on gold nanoparticles: Theoretical studies. Appl. Catal. A 2005, 291, 13–20.

    Article  Google Scholar 

  109. Zhou, Z.; Flytzani-Stephanopoulos, M.; Saltsburg, H. Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. J. Catal. 2011, 280, 255–263.

    Article  Google Scholar 

  110. Bondzie, V. A.; Parker, S. C.; Campbell, C. T. The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110). Catal. Lett. 1999, 63, 143–151.

    Article  Google Scholar 

  111. Li, L.; Zeng, X. C. Direct simulation evidence of generation of oxygen vacancies at the golden cage Au16 and TiO2 (110) interface for CO oxidation. J. Am. Chem. Soc. 2014, 136, 15857–15.

    Article  Google Scholar 

  112. Zhang, S.-R.; Nguyen, L.; Liang, J.-X.; Shan, J.-J.; Liu, J.-Y.; Frenkel, A. I.; Patlolla, A.; Huang, W.-X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, B., Tang, Y. & Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2 . Nano Res. 9, 3868–3880 (2016). https://doi.org/10.1007/s12274-016-1256-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1256-x

Keywords

Navigation