Skip to main content
Log in

Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

We used density functional theory to examine whether doping oxides makes them better oxidation catalysts. We studied in detail titania doped with Au and used CO oxidation as a test of the oxidizing power of the system. We show that doping with Au, Ag, Cu, Pt, Pd, Ni reduces dramatically the bond of surface oxygen to titania or ceria, making them better oxidation catalysts. These calculations suggest that it is worthwhile to explore doped oxides as oxidation catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Fu H. Saltsburg M. Flytzani-Stephanopoulos (2003) Science 301 935 Occurrence Handle10.1126/science.1085721 Occurrence Handle1:CAS:528:DC%2BD3sXmt1els7s%3D

    Article  CAS  Google Scholar 

  2. Q. Fu W. Deng H. Saltsburg M. Flytzani-Stephanopoulos (2005) Appl. Catal. B 56 57 Occurrence Handle1:CAS:528:DC%2BD2MXhtVKnsLg%3D

    CAS  Google Scholar 

  3. J. Guzman S. Carrettin A. Corma (2005) J. Am. Chem. Soc. 127 3286 Occurrence Handle10.1021/ja043752s Occurrence Handle1:CAS:528:DC%2BD2MXhtlCgtLo%3D

    Article  CAS  Google Scholar 

  4. A.M. Venezia G. Pantaleo A. Longo G. Di Carlo M.P. Casaletto F.L. Liotta G. Deganello (2005) J. Phys. Chem. B 109 2821 Occurrence Handle10.1021/jp045928i Occurrence Handle1:CAS:528:DC%2BD2MXmslKktA%3D%3D

    Article  CAS  Google Scholar 

  5. J. Guzman B.C. Gates (2004) J. Am. Chem. Soc. 126 2672 Occurrence Handle10.1021/ja039426e Occurrence Handle1:CAS:528:DC%2BD2cXht1Wisbk%3D

    Article  CAS  Google Scholar 

  6. J.T. Calla R.J. Davis (2005) Catal. Lett. 99 21 Occurrence Handle10.1007/s10562-004-0771-7 Occurrence Handle1:CAS:528:DC%2BD2MXotFKj

    Article  CAS  Google Scholar 

  7. N.A. Hodge C.J. Kiely R. Whyman M.R.H. Siddiqui G.J. Hutchings Q.A. Pankhurst F.E. Wagner R.R. Rajaram S.E. Golunski (2002) Catal. Today 72 133 Occurrence Handle10.1016/S0920-5861(01)00487-4 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtbk%3D

    Article  CAS  Google Scholar 

  8. Y. Nishihata J. Mizuki T. Akao H. Tanaka M. Uenishi M. Kimura T. Okamoto N. Hamada (2002) Nature 418 164 Occurrence Handle10.1038/nature00893 Occurrence Handle1:CAS:528:DC%2BD38XltFGls7o%3D

    Article  CAS  Google Scholar 

  9. H. Tanaka N. Mizuno M. Misono (2003) Appl. Catal. A 244 371 Occurrence Handle1:CAS:528:DC%2BD3sXjtFegur8%3D

    CAS  Google Scholar 

  10. H. Tanaka I. Tan M. Uenishi M. Kimura K. Dohmae (2001) Top. Catal. 16/17 63 Occurrence Handle10.1023/A:1016626713430 Occurrence Handle1:CAS:528:DC%2BD3MXns1GgsL0%3D

    Article  CAS  Google Scholar 

  11. H. Tanaka M. Taniguchi N. Kajita M. Uenishi I. Tan N. Sato K. Narita M. Kimura (2004) Top. Catal. 30/31 389 Occurrence Handle10.1023/B:TOCA.0000029780.70319.36 Occurrence Handle1:CAS:528:DC%2BD2cXmtVens7k%3D

    Article  CAS  Google Scholar 

  12. G.C. Bond (2002) Catal. Today 72 5 Occurrence Handle10.1016/S0920-5861(01)00522-3 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtLw%3D

    Article  CAS  Google Scholar 

  13. H. Haruta M. Date (2001) Appl. Cat. A 222 427 Occurrence Handle1:CAS:528:DC%2BD38XjvFai

    CAS  Google Scholar 

  14. M. Haruta (2004) Gold Bull. 37 27 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsL8%3D

    CAS  Google Scholar 

  15. R. Meyer C. Lemire S.K. Shaikhutdinor H.-J. Freund (2004) Gold Bull. 37 72 Occurrence Handle1:CAS:528:DC%2BD2cXnt1emsLg%3D

    CAS  Google Scholar 

  16. J.P. Perdew J.A. Chevary S.H. Vosko K.A. Jackson M.R. Pederson D.J. Singh C. Fiolhais (1992) Phys. Rev. B 46 6671 Occurrence Handle1:CAS:528:DyaK38XlvFyks7c%3D

    CAS  Google Scholar 

  17. J.P. Perdew K. Burke Y. Wang (1996) Phys. Rev. B 54 16533 Occurrence Handle10.1103/PhysRevB.54.16533 Occurrence Handle1:CAS:528:DyaK2sXntFSk

    Article  CAS  Google Scholar 

  18. G. Kresse J. Hafner (1993) Phys. Rev. B 47 558 Occurrence Handle10.1103/PhysRevB.47.558 Occurrence Handle1:CAS:528:DyaK3sXlt1Gnsr0%3D

    Article  CAS  Google Scholar 

  19. G. Kresse J. Hafner (1994) Phys. Rev. B 49 14251 Occurrence Handle10.1103/PhysRevB.49.14251 Occurrence Handle1:CAS:528:DyaK2cXkvFKrtL4%3D

    Article  CAS  Google Scholar 

  20. G. Kresse J. Furthmuller (1996) Phys. Rev. B 54 11169 Occurrence Handle10.1103/PhysRevB.54.11169 Occurrence Handle1:CAS:528:DyaK28Xms1Whu7Y%3D

    Article  CAS  Google Scholar 

  21. G. Kresse J. Furthmuller (1996) Comput. Mater. Sci. 6 15 Occurrence Handle10.1016/0927-0256(96)00008-0 Occurrence Handle1:CAS:528:DyaK28XmtFWgsrk%3D

    Article  CAS  Google Scholar 

  22. D. Vanderbilt (1990) Phys. Rev. B 41 7892 Occurrence Handle10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  23. G. Makov M.C. Payne (1995) Phys. Rev. B 51 4014 Occurrence Handle10.1103/PhysRevB.51.4014 Occurrence Handle1:CAS:528:DyaK2MXjvVGksbk%3D

    Article  CAS  Google Scholar 

  24. W.H. Press S.A. Teukolsky W.T. Flannery B.P. Vetterling (1992) Numerical Recipes in Fortran: The Art of Scientific Computing Cambridge University Press Cambridge

    Google Scholar 

  25. H. Jónsson, G. Mills and K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics “Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed-Phase Systems”, B.J. Berne, G. Cicotti and D.F. eds, Coker (World Scientific Publishing Company, Singapore, 1998) ch. 18.

  26. The results report for the remaining of the paper were obtained on a slab composed of 12 layers (4 triple-layers) in order to reduce the computational cost associated with the 15 layers slab. The energy to form a bridging oxygen vacancy in AuxTi1-xO2(110) oscillates with the slab thickness, as it does for the undoped oxide (see Ref. 28). However, regardless of slab thickness doping produces a dramatic lowering of the energy to form a vacancy and variations due to slab thickness do not alter our qualitative conclusions.

  27. V. Shapovalov and H. Metiu, In preparation (2005).

  28. X.Y. Wu A. Selloni S.K. Nayak (2004) J. Chem. Phys. 120 4512 Occurrence Handle1:CAS:528:DC%2BD2cXhslaku7o%3D

    CAS  Google Scholar 

  29. G. Pacchioni F. Frigoli D. Ricci J.A. Weil (2001) Phys. Rev. B 63 054102 Occurrence Handle10.1103/PhysRevB.63.054102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Metiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrétien, S., Metiu, H. Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis. Catal Lett 107, 143–147 (2006). https://doi.org/10.1007/s10562-005-0014-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-0014-6

Keywords

Navigation