Skip to main content
Log in

Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co3O4 nanosheets (PtCo/Co3O4 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/Co3O4 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm–2 were obtained at–0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L–1 NaOH and 0.2 mol·L–1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B–H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hosseini, M. G.; Abdolmaleki, M.; Nasirpouri, F. Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim. Acta 2013, 114, 215–222.

    Article  Google Scholar 

  2. Chan, B. C.; Liu, R. X.; Jambunathan, K.; Zhang, H.; Chen, G. Y.; Mallouk, T. E.; Smotkin, E. S. Comparison of highthroughput electrochemical methods for testing direct methanol fuel cell anode electrocatalysts. J. Electrochem. Soc. 2005, 152, A594–A600.

    Article  Google Scholar 

  3. Kho, B. K.; Bae, B.; Scibioh, M. A.; Lee, J.; Ha, H. Y. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. J. Power Sources 2005, 142, 50–55.

    Article  Google Scholar 

  4. Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308–2316.

    Article  Google Scholar 

  5. Zhao, L.; Wang, Z. B.; Liu, J.; Zhang, J. J.; Sui, X. L.; Zhang, L. M.; Gu, D. M. Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J. Power Sources 2015, 279, 210–217.

    Article  Google Scholar 

  6. Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.

    Article  Google Scholar 

  7. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

    Article  Google Scholar 

  8. Yang, J.; Xie, Y.; Wang, R. H.; Jiang, B. J.; Tian, C. G.; Mu, G.; Yin, J.; Wang, B.; Fu, H. G. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation. ACS Appl. Mater. Interfaces 2013, 5, 6571–6579.

    Article  Google Scholar 

  9. Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.

    Article  Google Scholar 

  10. Karaliberoglu, S. U.; Pelit, L.; Gelmez, B.; Dursun, Z. Electrocatalytic oxidation of sodium borohydride on metal ad-atom modified Au(111) single crystal electrodes in alkaline solution. Int. J. Hydrogen Energy 2011, 36, 12678–12685.

    Article  Google Scholar 

  11. Coutanceau, C.; Koffi, R. K.; Léger, J. M.; Marestin, K.; Mercier, R.; Nayoze, C.; Capron, P. Development of materials for mini DMFC working at room temperature for portable applications. J. Power Sources 2006, 160, 334–339.

    Article  Google Scholar 

  12. Peled, E.; Livshits, V.; Duvdevani, T. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J. Power Sources 2002, 106, 245–248.

    Article  Google Scholar 

  13. Wang, W.; Gu, L.; Qian, H. L.; Zhao, M.; Ding, X.; Peng, X. S.; Sha, J.; Wang, Y. W. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. J. Power Sources 2016, 307, 410–415.

    Article  Google Scholar 

  14. Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. MnO2‒x nanosheets on stainless steel felt as a carbon- and binderfree cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2016, 306, 724–732.

    Article  Google Scholar 

  15. Zhang, W.; Yan, X. Y.; Tong, X. L.; Yang, J.; Miao, L.; Sun, Y. Y.; Peng, L. Y. Self-supported hierarchical hollowbranch cobalt oxide nanorod arrays as binder-free electrodes for high-performance lithium ion batteries. Mater. Lett. 2016, 162, 101–104.

    Article  Google Scholar 

  16. Krishnamoorthy, K.; Veerasubramani, G. K.; Pazhamalai, P.; Kim, S. J. Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochim. Acta 2016, 190, 305–312.

    Article  Google Scholar 

  17. Zheng, Y. C.; Li, Z. Q.; Xu, J.; Wang, T. L.; Liu, X.; Duan, X. H.; Ma, Y. J.; Zhou, Y.; Pei, C. H. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 2016, 20, 94–107.

    Article  Google Scholar 

  18. Perera, S. D.; Rudolph, M.; Mariano, R. G.; Nijem, N.; Ferraris, J. P.; Chabal, Y. J.; Balkus, K. J., Jr. Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy 2013, 2, 966–975.

    Article  Google Scholar 

  19. Zheng, S. Q.; Yang, F. F.; Chen, S. L.; Liu, L.; Xiong, Q.; Yu, T.; Zhao, F.; Schröder, U.; Hou, H. Q. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015, 284, 252–257.

    Article  Google Scholar 

  20. Chen, S. L.; Chen, Y.; He, G. H.; He, S. J.; Schroder, U.; Hou, H. Q. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosens. Bioelectron. 2012, 34, 282–285.

    Article  Google Scholar 

  21. Zhu, Q. C.; Hu, H.; Li, G. J.; Zhu, C. B.; Yu, Y. TiO2 nanotube arrays grafted with MnO2 nanosheets as highperformance anode for lithium ion battery. Electrochim. Acta 2015, 156, 252–260.

    Article  Google Scholar 

  22. Chen, Q.; Heng, B. J.; Wang, H.; Sun, D. M.; Wang, B. X.; Sun, M.; Guan, S. L.; Fu, R. Y.; Tang, Y. W. Controlled facile synthesis of hierarchical CuO@MnO2 core–shell nanosheet arrays for high-performance lithium-ion battery. J. Alloy. Compd. 2015, 641, 80–86.

    Article  Google Scholar 

  23. Santos, D. M. F.; Sequeira, C. A. C. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 2011, 15, 3980–4001.

    Article  Google Scholar 

  24. Yang, Z. Z.; Wang, L. B.; Gao, Y. F.; Mao, X. B.; Ma, C. A. LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell. J. Power Sources 2008, 184, 260–264.

    Article  Google Scholar 

  25. Merino-Jimenez, I.; Janik, M. J.; Ponce de Leon, C.; Walsh, F. C. Pd–Ir alloy as an anode material for borohydride oxidation. J. Power Sources 2014, 269, 498–508.

    Article  Google Scholar 

  26. Zhang, X. L.; Wei, C. H.; Song, Y. Y.; Song, X. P.; Sun, Z. B. Nanoporous Ag–ZrO2 composites prepared by chemical dealloying for borohydride electro-oxidation. Int. J. Hydrogen Energy 2014, 39, 15646–15655.

    Article  Google Scholar 

  27. Sanli, E.; Uysal, B. Z.; Aksu, M. L. The oxidation of NaBH4 on electrochemicaly treated silver electrodes. Int. J. Hydrogen Energy 2008, 33, 2097–2104.

    Article  Google Scholar 

  28. Ma, J.; Sahai, Y.; Buchheit, R. G. Direct borohydride fuel cell using Ni-based composite anodes. J. Power Sources 2010, 195, 4709–4713.

    Article  Google Scholar 

  29. Wang, B.; Zhang, D. M.; Ye, K.; Cheng, K.; Cao, D. X.; Wang, G. L.; Cheng, X. L. Plastic supported platinum modified nickel electrode and its high electrocatalytic activity for sodium borohydride electrooxidation. J. Energ. Chem. 2015, 24, 497–502.

    Article  Google Scholar 

  30. Santos, D. M. F.; Sequeira, C. A. C. Zinc anode for direct borohydride fuel cells. J. Electrochem. Soc. 2010, 157, B13–B19.

    Article  Google Scholar 

  31. Saha, S.; Ganguly, S.; Banerjee, D.; Kargupta, K. Novel bimetallic graphene–cobalt–nickel (G–Co–Ni) nano-ensemble electrocatalyst for enhanced borohydride oxidation. Int. J. Hydrogen Energy 2015, 40, 1760–1773.

    Article  Google Scholar 

  32. Zhang, D. M.; Ye, K.; Cheng, K.; Cao, D. X.; Yin, J. L.; Xu, Y.; Wang, G. L. High electrocatalytic activity of cobalt–multiwalled carbon nanotubes–cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int. J. Hydrogen Energy 2014, 39, 9651–9657.

    Article  Google Scholar 

  33. Yao, J.; Yao, Y. F. Experimental study of characteristics of bimetallic Pt–Fe nano-particle fuel cell electrocatalyst. Renew. Energ. 2015, 81, 182–196.

    Article  Google Scholar 

  34. Wang, L. B.; Ma, C.; Mao, X. B.; Sun, Y. M.; Suda, S. AB5-type hydrogen storage alloy modified with Ti/Zr used as anodic materials in borohydride fuel cell. J. Mater. Sci. Technol. 2005, 21, 831–835.

    Article  Google Scholar 

  35. Zhang, D. M.; Wang, G. L.; Cheng, K.; Huang, J. C.; Yan, P.; Cao, D. X. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation. J. Power Sources 2014, 245, 482–486.

    Article  Google Scholar 

  36. Liu, B. H.; Suda, S. Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J. Alloy. Compd. 2008, 454, 280–285.

    Article  Google Scholar 

  37. Liu, B. H.; Li, Z. P.; Suda, S. Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 2003, 150, A398–A402.

    Article  Google Scholar 

  38. Liu, B. H.; Li, Z. P.; Suda, S. Electrocatalysts for the anodic oxidation of borohydrides. Electrochim. Acta 2004, 49, 3097–3105.

    Article  Google Scholar 

  39. Rostamikia, G.; Janik, M. J. Direct borohydride oxidation: Mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 2010, 3, 1262–1274.

    Article  Google Scholar 

  40. Zhang, D. M.; Ye, K.; Cao, D. X.; Wang, B.; Cheng, K.; Li, Y. J.; Wang, G. L.; Xu, Y. Co@MWNTs-plastic: A novel electrode for NaBH4 oxidation. Electrochim. Acta 2015, 156, 102–107.

    Article  Google Scholar 

  41. Molina Concha, B.; Chatenet, M. Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media: Part II. Carbon-supported nanoparticles. Electrochim. Acta 2009, 54, 6130–6139.

    Google Scholar 

  42. Huang, J. C.; Zhu, J. T.; Cheng, K.; Xu, Y.; Cao, D. X.; Wang, G. L. Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochimi. Acta 2012, 75, 273–278.

    Article  Google Scholar 

  43. Mahmoudian, M. R.; Basirun, W. J.; Woi, P. M.; Sookhakian, M.; Yousefi, R.; Ghadim, H.; Alias, Y. Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater. Sci. Eng. C 2016, 59, 500–508.

    Article  Google Scholar 

  44. Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.

    Article  Google Scholar 

  45. Li, D. B.; Li, M.; Pan, J.; Luo, Y. Y.; Wu, H.; Zhang, Y. X.; Li, G. H. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. ACS Appl. Mater. Interfaces 2014, 6, 6555–6561.

    Article  Google Scholar 

  46. Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.

    Article  Google Scholar 

  47. Tholkappiyan, R.; Vishista, K. Tuning the composition and magnetostructure of dysprosium iron garnets by Cosubstitution: An XRD, FT-IR, XPS and VSM Study. Appl. Surf. Sci. 2015, 351, 1016–1024.

    Article  Google Scholar 

  48. Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Threedimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

    Article  Google Scholar 

  49. Bonnelle, J. P.; Grimblot, J.; D’huysser, A. Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt. J. Electron. Spectrosc. Relat. Phenom. 1975, 7, 151–162.

    Article  Google Scholar 

  50. McIntyre, N. S.; Johnston, D. D.; Coatsworth, L. L.; Davidson, R. D.; Brown, J. R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum. Surf. Interface Anal. 1990, 15, 265–272.

    Article  Google Scholar 

  51. Anton, J.; Nebel, J.; Song, H. Q.; Froese, C.; Weide, P.; Ruland, H.; Muhler, M.; Kaluza, S. Structure–activity relationships of Co-modified Cu/ZnO/Al2O3 catalysts applied in the synthesis of higher alcohols from synthesis gas. Appl. Catal. A-Gen. 2015, 505, 326–333.

    Article  Google Scholar 

  52. Zhai, C. Y.; Zhu, M. S.; Pang, F. Z.; Bin, D.; Lu, C.; Cynthia Goh, M.; Yang, P.; Du, Y. K. High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl. Mater. Interfaces 2016, 8, 5972–5980.

    Article  Google Scholar 

  53. Wei, J. L.; Wang, X. Y.; Wang, Y.; Chen, Q. Q.; Pei, F.; Wang, Y. S. Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int. J. Hydrogen Energy 2009, 34, 3360–3366.

    Article  Google Scholar 

  54. Tegou, A.; Armyanovm, S.; Valova, E.; Steenhaut, O.; Hubin, A.; Kokkinidis, G.; Sotiropoulos, S. Mixed platinum–gold electrocatalysts for borohydride oxidation prepared by the galvanic replacement of nickel deposits. J. Electroanal. Chem. 2009, 634, 104–110.

    Article  Google Scholar 

  55. Cheng, K.; Cao, D. X.; Yang, F.; Zhang, D. M.; Yan, P.; Yin, J. L.; Wang, G. L. Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance toward NaBH4 electrooxidation. J. Power Sources 2013, 242, 141–147.

    Article  Google Scholar 

  56. Simões, M.; Baranton, S.; Coutanceau, C. Electrooxidation of sodium borohydride at Pd, Au, and PdxAu1−x carbonsupported nanocatalysts. J. Phys. Chem. C 2009, 113, 13369–13376.

    Article  Google Scholar 

  57. Yi, L. H.; Liu, L.; Liu, X.; Wang, X. Y.; Yi, W.; He, P. Y.; Wang, X. Y. Carbon-supported Pt–Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. Int. J. Hydrogen Energy 2012, 37, 12650–12658.

    Article  Google Scholar 

  58. Pei, F.; Wang, Y.; Wang, X. Y.; He, P. Y.; Chen, Q. Q.; Wang, X. Y.; Wang, H.; Yi, L. H.; Guo, J. Performance of supported Au–Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrogen Energy 2010, 35, 8136–8142.

    Article  Google Scholar 

  59. Wei, J. L.; Wang, X. Y.; Wang, Y.; Guo, J.; He, P. Y.; Yang, S. Y.; Li, N.; Pei, F.; Wang, Y. S. Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. Energy Fuels 2009, 23, 4037–4041.

    Article  Google Scholar 

  60. Wang, G. L.; Zhang, W. C.; Cao, D. X.; Liu, J. C.; Wang, X. Y.; Wang, S.; Sun, K. N. Fe2O3-modified hydrogen storage alloys as electrocatalyst for borohydride oxidation. Chinese J. Chem. 2009, 27, 2166–2170.

    Article  Google Scholar 

  61. Yan, P.; Zhang, D. M.; Cheng, K.; Wang, Y. J.; Ye, K.; Cao, D. X.; Wang, B.; Wang, G. L.; Li, Q. Preparation of Au nanoparticles modified TiO2/C core/shell nanowire array and its catalytic performance for NaBH4 oxidation. J. Electroanal. Chem. 2015, 745, 56–60.

    Article  Google Scholar 

  62. Wang, G. J.; Gao, Y. Z.; Wang, Z. B.; Du, C. Y.; Wang, J. J.; Yin, G. P. Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J. Power Sources 2010, 195, 185–189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongming Zhang or Guiling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Zhang, D., Wang, B. et al. Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation. Nano Res. 9, 3322–3333 (2016). https://doi.org/10.1007/s12274-016-1209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1209-4

Keywords

Navigation