Skip to main content
Log in

Tunable filter Raman spectroscopy of purified semiconducting and metallic carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tunable filter Raman spectroscopy is used to efficiently produce Raman excitation maps of unpurified and type-purified single walled carbon nanotubes (SWCNTs). Maps with fine excitation resolution (1 nm) are created over a wide wavelength range (727 to 980 nm), extending from metallic to semiconducting resonances. At a given wavelength, the wide bandwidth (>3,000 cm–1) allows the comparison of the G band with the radial breathing mode (RBM), and shows the 2D band and other less prominent bands. Materials examined included unsorted powders, aqueous sorted semiconductors, aqueous sorted metals, and polyfluorene sorted semiconductors in toluene. The Raman excitation profiles of the G band are broad, relative to the RBM bands. The maps offer evidence of minority species contamination, except in the case of the polyfluorene sorted semiconductors. Tunable Raman spectroscopy data help validate the simpler fixed wavelength Raman spectroscopy approaches to purity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK,1998.

    Book  Google Scholar 

  2. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  3. Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G. F. Raman Spectroscopy in Graphene Related Systems; Wiley-VCH: Weinheim, Germany, 2011.

    Book  Google Scholar 

  4. Kaminska, K; Lefebvre, J; Austing, D. G.; Finnie, P. Realtime global Raman imaging and optical manipulation of suspended carbon nanotubes. Phys. Rev. B 2006, 73, 235410.

    Article  Google Scholar 

  5. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Uemezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synt. Met. 1999, 103, 2555–2558.

    Article  Google Scholar 

  6. Thomsen, C.; Telg, H.; Maultzsch, J.; Reich, S. Chirality assignments in carbon nanotubes based on resonant Raman scattering. Phys. Stat. Sol. (b) 2005, 242, 1802–1806.

    Article  Google Scholar 

  7. Maultzsch, J.; Telg, H; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B 2005, 72, 205438.

    Article  Google Scholar 

  8. Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L. et al. Quantifying carbon-nanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.

    Article  Google Scholar 

  9. Brar, V. W.; Samsonidize, G. G.; Santos, A. P.; Chou, S. G.; Chattopadhyay, D.; Kim, S. N.; Papadimitrakopoulos, F.; Zheng, M.; Jagota, A.; Onoa, G. B. et al. Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter. J. Nanosci. Nanotechnol. 2005, 5, 209–228.

    Article  Google Scholar 

  10. Pesce, P. B. C.; Araujo, P. T.; Nikolaev, P.; Doorn, S. K.; Hata, K.; Saito, R.; Dresselhaus, M. S.; Jorio, A Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. Appl. Phys. Lett. 2010, 96, 051910.

    Article  Google Scholar 

  11. Son, H. B.; Reina, A.; Dresselhaus, M. S.; Kong, J. Characterizing the chirality distribution of single-walled carbon nanotube materials with tunable Raman spectroscopy. Phys. Stat. Sol. (b) 2006, 243, 3161–3165.

    Article  Google Scholar 

  12. Inoue, T.; Hasegawa, D.; Chiashi, S.; Maruyama, S. Chirality analysis of horizontally aligned single-walled carbon nanotubes: Decoupling populations and lengths. J. Mater. Chem. A 2015, 3, 15119–15123.

    Article  Google Scholar 

  13. Canonico, M.; Adams, G. B.; Poweleit, C.; Menéndez, J.; Page, J. B.; Harris, G.; van der Meulen, H. P.; Calleja, J. M.; Rubio, J. Characterization of carbon nanotubes using Raman excitation profiles. Phys. Rev. B 2002, 65, 201402(R).

    Article  Google Scholar 

  14. Doorn, S. K.; Heller, D. A.; Barone, P. W.; Usrey, M. L.; Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 2004, 78, 1147–1155.

    Article  Google Scholar 

  15. O’Connell, M. J.; Sivaram, S.; Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 2004, 69, 235415.

    Article  Google Scholar 

  16. Telg, H.; Maultzsch, J.; Reich, S.; Hennrich, F.; Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 2004, 93, 177401.

    Article  Google Scholar 

  17. Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.

    Article  Google Scholar 

  18. Park, J. S.; Oyama, Y.; Saito, R.; Izumida, W.; Jiang, J.; Sato, K.; Fantini, C.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Raman resonance window of single-wall carbon nanotubes. Phys. Rev. B 2006, 74, 165414.

    Article  Google Scholar 

  19. Hároz, E. H.; Rice, W. D.; Lu, B. Y.; Ghosh, S.; Hauge, R. H.; Weisman, R. B.; Doorn, S. K.; Kono, J. Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. ACS Nano 2010, 4, 1955–1962.

    Article  Google Scholar 

  20. Blum, C.; Stürzl, N.; Hennrich, F.; Lebedkin, S.; Heeg, S.; Dumlich, H.; Reich, S.; Kappes, M. M. Selective bundling of zigzag single-walled carbon nanotubes. ACS Nano 2011, 5, 2847–2854.

    Article  Google Scholar 

  21. Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5, 3). Phys. Rev. Lett. 2010, 104, 207401.

    Article  Google Scholar 

  22. Telg, H.; Thomsen, C.; Maultzsch, J. Raman intensities of the radial-breathing mode in carbon nanotubes: The excitonphonon coupling as a function of (n1, n2). J. Nanophotonics 2010, 4, 041660.

    Article  Google Scholar 

  23. Telg, H.; Maultzsch, J.; Reich, S.; Thomsen, C. First and second optical transitions in single-walled carbon nanotubes: A resonant Raman study. Phys. Stat. Sol. (b) 2007, 244, 4006–4010.

    Article  Google Scholar 

  24. Doorn, S. K.; Araujo, P. T.; Hata, K.; Jorio, A. Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy. Phys. Rev. B 2008, 78, 165408.

    Article  Google Scholar 

  25. Araujo, P. T.; Doorn, S. K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M. A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401.

    Article  Google Scholar 

  26. Telg, H.; Duque, J. G.; Staiger, M.; Tu, X. M.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. Chiral index dependence of the G+ and G Raman modes in semiconducting carbon nanotubes. ACS Nano 2012, 6, 904–911.

    Article  Google Scholar 

  27. Fantini, C.; Jorio, A.; Souza, M.; Saito, R.; Samsonidze, G. G.; Dresselhaus, M. S.; Pimenta, M. A. Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes. Phys. Rev. B 2005, 72, 085446.

    Article  Google Scholar 

  28. Luo, Z. T.; Papadimitrakopoulos, F.; Doorn, S. K. Intermediate-frequency Raman modes for the lower optical transitions of semiconducting single-walled carbon nanotubes. Phys. Rev. B. 2007, 75, 205438.

    Article  Google Scholar 

  29. Luo, Z. T.; Papadimitrakopoulos, F.; Doorn, S. K. Bundling effects on the intensities of second-order Raman modes in semiconducting single-walled carbon nanotubes. Phys. Rev. B 2008, 77, 035421.

    Article  Google Scholar 

  30. Laudenbach, J.; Hennrich, F.; Telg, H.; Kappes, M.; Maultzsch, J. Resonance behavior of the defect-induced Raman mode of single-chirality enriched carbon nanotubes. Phys. Rev. B 2013, 87, 165423.

    Article  Google Scholar 

  31. Duque, J. G.; Telg, H.; Chen, H.; Swan, A. K.; Shreve, A. P.; Tu, X. M.; Zheng, M.; Doorn, S. K. Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy. Phys. Rev. Lett. 2012, 108, 117404.

    Article  Google Scholar 

  32. Jiang, J.; Saito, R.; Grüneis, A.; Chou, S. G.; Samsonidze, G. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Phys. Rev. B, 2005, 71, 205420.

    Article  Google Scholar 

  33. Duque, J. G.; Chen, H.; Swan, A. K.; Shreve, A. P.; Kilina, S.; Tretiak, S.; Tu, X. M.; Zheng, M.; Doorn, S. K. Violation of the Condon approximation in semiconducting carbon nanotubes. ACS Nano 2011, 5, 5233–5241.

    Article  Google Scholar 

  34. Moura, L. G.; Moutinho, M. V. O.; Venezuela, P.; Fantini, C.; Righi, A.; Strano, M. S.; Pimenta, M. A. Raman excitation profile of the G band in single-chirality carbon nanotubes. Phys. Rev. B 2014, 89, 035402.

    Article  Google Scholar 

  35. Hároz, E. H.; Duque, J. G.; Barros, E. B.; Telg, H.; Simpson, J. R.; Hight Walker, A. R.; Khripin, C. Y.; Fagan, J. A.; Tu, X. M.; Zheng, M. et al. Asymmetric excitation profiles in the resonance Raman response of armchair carbon nanotubes. Phys. Rev. B 2015, 91, 205446.

    Article  Google Scholar 

  36. Finnie, P.; Ding, J. F.; Li, Z.; Kingston, C. T. Assessment of the metallicity of single-wall carbon nanotube ensembles at high purities. J. Phys. Chem. C 2014, 118, 30127–30138.

    Article  Google Scholar 

  37. Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179–2187.

    Article  Google Scholar 

  38. Yin, Y.; Walsh, A. G.; Vamivakas, A. N.; Cronin, S. B.; Stolyarov, A. M.; Tinkham, M.; Bacsa, W.; Ünlü, M. S.; Goldberg, B. B.; Swan, A. K. Tunable resonant Raman scattering from singly resonant single wall carbon nanotubes. IEEE J. Sel. Top. Quant. 2006, 12, 1083–1090.

    Article  Google Scholar 

  39. Fábián, G.; Kramberger, C.; Friedrich, A.; Simon, F.; Pichler, T. A broadband and high throughput single-monochromator Raman spectrometer: Application for single-wall carbon nanotubes. Rev. Sci. Instrum. 2011, 82, 023905.

    Article  Google Scholar 

  40. Fábián, G.; Kramberger, C.; Friedrich, A.; Simon, F.; Pichler, T. Adaptation of a commercial Raman spectrometer for multiline and broadband laser operation. Phys. Stat. Sol. (b) 2011, 248, 2581–2584.

    Article  Google Scholar 

  41. Stürzl, N; Lebedkin, S; Klumpp, S; Hennrich, F; Kappes, M. M. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging. Anal. Chem. 2013, 85, 4554–4559.

    Article  Google Scholar 

  42. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95.

    Article  Google Scholar 

  43. Jiang, J.; Saito, R.; Grüneis, A.; Chou, S. G.; Samsonidze, G. G.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Phys. Rev. B 2005, 71, 205420.

    Article  Google Scholar 

  44. Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dubey, G.; Zou, S; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G. P. et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339.

    Article  Google Scholar 

  45. Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dunford, J. L.; Malenfant, P. R. L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747.

    Article  Google Scholar 

  46. Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  Google Scholar 

  47. Kim, K. K.; Park, J. S.; Kim, S. J.; Geng, H. Z.; An, K. H.; Yang, C.-M.; Sato, K.; Saito, R.; Lee, Y. H. Dependence of Raman spectra G’ band intensity on metallicity of single-wall carbon nanotubes. Phys. Rev. B 2007, 76, 205426.

    Article  Google Scholar 

  48. Martins Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

    Article  Google Scholar 

  49. Blackburn, J. L.; Engtrakul, C.; McDonald, T. J.; Dillon, A. C.; Heben, M. J. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions. J. Phys. Chem. B 2006, 110, 25551–25558.

    Article  Google Scholar 

  50. Hatting, B.; Heeg, S.; Reich, S. Raman spectra of metallic carbon nanotubes in solution and on substrates. Phys. Stat. Sol. (b) 2013, 250, 2639–2642.

    Article  Google Scholar 

  51. Hároz, E. H.; Duque, J. G.; Rice, W. D.; Densmore, C. G.; Kono, J.; Doorn, S. K. Resonant Raman spectroscopy of armchair carbon nanotubes: Absence of broad G feature. Phys. Rev. B 2011, 84, 121403(R).

    Article  Google Scholar 

  52. Hasdeo, E. H.; Nugraha, A. R. T.; Sato, K.; Dresselhaus, M. S.; Saito, R. Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes. Phys. Rev. B 2013, 88, 115107.

    Article  Google Scholar 

  53. Débarre, A.; Kobylko, M.; Bonnot, A. M.; Richard, A.; Popov, V. N.; Henrard, L.; Kociak, M. Electronic and mechanical coupling of carbon nanotubes: A tunable resonant Raman study of systems with known structures. Phys. Rev. Lett. 2008, 101, 197403.

    Article  Google Scholar 

  54. Levshov, D. I.; Michel, T.; Arenal, R.; Tran, H. N.; Than, T. X.; Paillet, M.; Yuzyuk, Y. I.; Sauvajol, J.-L. Interlayer dependence of g-modes in semiconducting double-walled carbon nanotubes. J. Phys. Chem. C 2015, 119, 23196–23202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Finnie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finnie, P. Tunable filter Raman spectroscopy of purified semiconducting and metallic carbon nanotubes. Nano Res. 9, 2715–2728 (2016). https://doi.org/10.1007/s12274-016-1160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1160-4

Keywords

Navigation