Skip to main content

Raman Spectroscopy: A Potential Characterization Tool for Carbon Materials

  • Chapter
  • First Online:
Handbook of Materials Characterization

Abstract

Raman spectroscopy technique is potentially utilized to identify the chemical bonding in molecules or solids and doping in semiconducting materials. Even different forms of carbon materials could also be identified by this technique. Raman Spectroscopy helps in determining the size and conductivity of nanoscale system with high precision. The contents of this chapter include as follows: Sect. 11.2 describes the sample preparation method and instrumentation of confocal scanning microscopy which deals with the recording of Raman spectra of individual nanostructures. Section 11.3 discusses the geometrical structure, electronic band structure, phonon properties, and Raman spectra of single-walled carbon nanotubes (SWNTs). The Raman scattering of multi-walled carbon nanotubes (MWNTs) has also been discussed in Sect. 11.3. Section 11.3 presents the discussion on phonon properties and Raman scattering of graphene. In Sect. 11.5, the basic mechanism of surface-enhanced Raman spectroscopy (SERS) and its application to probe individual molecules are given. In Sect. 11.4, the momentum mapping of Raman scattering of individual nanostructures in the presence of optical nanoantenna is presented. Finally, in Sect. 11.7, summary and future aspects of this chapter is elaborated for the upcoming developments in the field of Raman scattering of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47.

    Article  Google Scholar 

  2. Misra, A., Tyagi, P. K., Rai, P., & Misra, D. S. (2007). FTIR spectroscopy of multiwalled carbon nanotubes: A simple Approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 7, 1820.

    Article  CAS  Google Scholar 

  3. Chen, G., Sumanshekera, G. U., Pradhan, B. K., Gupta, R., Eklund, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Raman-active modes of single-walled carbon nanotube derived from gas-phase decomposition of CO (HiPco process). Journal of Nanoscience and Nanotechnology, 2, 621.

    Article  CAS  Google Scholar 

  4. Kumar, C. S. S. R. (2012). Raman spectroscopy of nanomaterials characterization. Berlin: Springer.

    Book  Google Scholar 

  5. Ferraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman spectroscopy. New York: Academic.

    Google Scholar 

  6. Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., & Dresselhaus, M. S. (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 275, 187.

    Article  CAS  Google Scholar 

  7. Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8, 235.

    Article  CAS  Google Scholar 

  8. Raman spectroscopy: A simple, non-destructive way to characterize diamond and diamond-like materials. Spectroscopy Europe, 17, 10. (2005).

    Google Scholar 

  9. Kaufman, E. N. (2003). Characterization of materials. Hoboken, NJ: John Wiley & Sons, Inc.

    Google Scholar 

  10. Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102.

    Article  CAS  Google Scholar 

  11. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78, 1667.

    Article  CAS  Google Scholar 

  12. Zhu, W., Wang, D., & Crozier, K. B. (2012). Direct observation of beamed Raman scattering. Nano Letters, 12, 6235.

    Article  CAS  Google Scholar 

  13. Chu, Y., Zhu, W., Wang, D., & Crozier, K. B. (2011). Beamed Raman: Directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate. Optics Express, 19, 20054.

    Article  CAS  Google Scholar 

  14. Ahmed, A., & Gordon, R. (2011). Directivity enhanced Raman spectroscopy using nanoantennas. Nano Letters, 11, 1800.

    Article  CAS  Google Scholar 

  15. Rai, P., Singh, T., Brulé, T., Bouhelier, A., & Finot, E. (2017). Momentum angular mapping of enhanced Raman scattering of single-walled carbon nanotube. Applied Physics Letters, 111, 043104.

    Article  Google Scholar 

  16. Novotny, L., & Hecht, B. (2006). Principles of nano-optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  17. Dresselhaus, M. S., Dresselhaus, G., & Avouris, P. (2001). Springer series in topics in applied physics (Vol. 80). Berlin: Springer.

    Google Scholar 

  18. Chen, G., Sumanasekera, G. U., Pradhan, B. K., Gupta, R., Eklunf, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Journal of Nanoscience and Nanotechnology, 2, 621.

    Article  CAS  Google Scholar 

  19. Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., & Lieber, C. M. (2001). High yield fabrication of single-walled nanotube probe tips for atomic force microscopy. The Journal of Physical Chemistry. B, 105, 743.

    Article  CAS  Google Scholar 

  20. Hartmann, N., Piredda, G., Berthelot, J., Colas des Francs, G., Bouhelier, A., & Hartschuh, A. (2012). Nano Letters, 12, 177.

    Article  CAS  Google Scholar 

  21. Rai, P., Hartmann, N., Berthelot, J., des Francs, G. C., Hartschuh, A., & Bouhelier, A. (2012). Optics Letters, 37, 4711.

    Article  CAS  Google Scholar 

  22. Rai, P., Hartmann, N., Berthelot, J., Arocas, J., Colas des Francs, G., Hartschuh, A., & Bouhelier, A. (2013). Physical Review Letters, 111, 026804.

    Article  CAS  Google Scholar 

  23. Novoselov, K. S., et al. (2004). Science, 306, 666.

    Article  CAS  Google Scholar 

  24. Pandey, S., Rai, P., Patole, S., Gunes, F., Kwon, G.-D., Yoo, J.-B., Nikolaev, P., & Arepalli, S. (2012). Applied Physics Letters, 100, 043104.

    Article  Google Scholar 

  25. Avouris, P., & Dimitrakopoulos, C. (2012). Materialstoday, 15, 86.

    CAS  Google Scholar 

  26. Saito, R., Dresselhaus, M. S., & Dresselhaus, G. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.

    Book  Google Scholar 

  27. Harris, P. J. F. (1999). Carbon nanotubes and related materials: New materials for the twenty-first century. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Wallace, P. R. (1947). Physics Review, 71, 622.

    Article  CAS  Google Scholar 

  29. Tans, S. J. (1998). Ph.D thesis, Delft University Press.

    Google Scholar 

  30. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A., & Saito, R. (2002). Carbon, 40, 2043.

    Article  CAS  Google Scholar 

  31. Rao, A. M., Chen, J., Richter, E., Schlecht, U., Eklund, P. C., Haddon, R. C., Venkateswaran, U. D., Kwon, Y.-K., & Tomanek, D. (2001). Physical Review Letters, 86, 3895.

    Article  CAS  Google Scholar 

  32. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., Mcclure, T., Dresselhaus, G., & Dresselhaus, M. S. (2001). Physical Review Letters, 86, 1118.

    Article  CAS  Google Scholar 

  33. Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Souza, M., Dantas, M. S. S., Pimenta, M. A., Rao, A. M., Saito, R., Liu, C., & Cheng, H. M. (2000). Physical Review Letters, 85, 2617.

    Article  CAS  Google Scholar 

  34. Novoselov, K. S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666.

    Article  CAS  Google Scholar 

  35. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183.

    Article  CAS  Google Scholar 

  36. Charlier, J. C., Eklund, P. C., Zhu, J., & Ferrari, A. C. (2008). Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Topics in Applied Physics, 111, 673.

    Article  Google Scholar 

  37. Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4, 611.

    Article  CAS  Google Scholar 

  38. Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15, 564.

    Article  CAS  Google Scholar 

  39. Lin, Y. M., et al. (2010). 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662.

    Article  CAS  Google Scholar 

  40. Torrisi, F., et al. (2012). Inkjet-printed graphene electronics. ACS Nano, 6, 2992.

    Article  CAS  Google Scholar 

  41. Sun, Z., et al. (2009). Graphene mode-locked ultrafast laser. ACS Nano, 4, 803.

    Article  Google Scholar 

  42. Nemanich, R. J., Lucovsky, G., & Solin, S. A. (1977). Infrared active optical vibrations of graphite. Solid State Communications, 23, 117.

    Article  CAS  Google Scholar 

  43. Reich, S., & Thomsen, C. (2004). Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society A, 362, 2271.

    Article  CAS  Google Scholar 

  44. Pocsik, I., Hundhausen, M., Koos, M., & Ley, L. (1998). Origin of the D peak in the Raman spectrum of microcrystalline graphite. Journal of Non-Crystalline Solids, 227–230, 1083–1086.

    Article  Google Scholar 

  45. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H., & Ordejon, P. (2004). Phonon dispersion in graphite. Physical Review Letters, 92, 075501.

    Article  CAS  Google Scholar 

  46. Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53, 1126.

    Article  CAS  Google Scholar 

  47. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 14095.

    Article  CAS  Google Scholar 

  48. Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical Review Letters, 85, 5214.

    Article  CAS  Google Scholar 

  49. Gruneis, A., et al. (2009). Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Physical Review B, 80, 085423.

    Article  Google Scholar 

  50. Ferrari, A. C., et al. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97, 187401.

    Article  CAS  Google Scholar 

  51. Basko, D. M., Piscanec, S., & Ferrari, A. C. (2009). Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Physical Review B, 80, 165413.

    Article  Google Scholar 

  52. Tan, P. H., et al. (2012). The shear mode of multilayer graphene. Nature Materials, 11, 294.

    Article  CAS  Google Scholar 

  53. Lui, C., et al. (2012). Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12, 5539.

    Article  CAS  Google Scholar 

  54. Lui, C. H., & Heinz, T. F. (2013). Measurement of layer breathing mode vibrations in few-layer graphene. Physical Review B, 87, 121404.

    Article  Google Scholar 

  55. Sato, K., et al. (2011). Raman spectra of out-of-plane phonons in bilayer graphene. Physical Review B, 84, 035419.

    Article  Google Scholar 

  56. Baranov, A. V., et al. (1987). Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Optics and Spectroscopy, 62, 612.

    Google Scholar 

  57. Blackie, J. E., Le Ru, E. C., & Etchegoin, P. G. (2009). Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. Journal of the American Chemical Society, 131, 14466.

    Article  CAS  Google Scholar 

  58. Le Ru, E. C., et al. (2007). Surface enhanced Raman scattering enhancement factors: A comprehensive study. The Journal of Physical Chemistry C, 111, 13794.

    Article  Google Scholar 

  59. Wang, D., et al. (2013). Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Letters, 13, 2194.

    Article  CAS  Google Scholar 

  60. Taminiau, T. H., Stefani, F. D., Segerink, F. B., & van Hulst, N. F. (2008). Nature Photonics, 2, 234.

    Article  CAS  Google Scholar 

  61. Bohmler, M., Hartmann, N., Georgi, C., Hennrich, F., Green, A. A., Hersam, M. C., & Hartschuh, A. (2010). Optics Express, 18, 16443.

    Article  Google Scholar 

  62. Wang, D., Zhu, W., Best, M. D., Camden, J. P., & Crozier, K. B. (2013). Nano Letters, 13, 2194.

    Article  CAS  Google Scholar 

  63. Zhu, W., Wang, D., & Crozier, K. B. (2012). Nano Letters, 12, 6235.

    Article  CAS  Google Scholar 

  64. Heeg, S., Oikonomou, A., Fernandez-Garcia, R., Lehmann, C., Maier, S. A., Vijayaraghavan, A., & Reich, S. (2014). Nano Letters, 14, 1762.

    Article  CAS  Google Scholar 

  65. Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Mullen, K., & Moerner, W. E. (2009). Nature Photonics, 3, 654.

    Article  CAS  Google Scholar 

  66. Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Science, 329, 930.

    Article  CAS  Google Scholar 

  67. Le Ru, E. C., & Etchegoin, P. G. (2012). Annual Review of Physical Chemistry, 63, 65.

    Article  Google Scholar 

  68. Le Ru, E. C., & Etchegoin, P. G. (2006). Chemical Physics Letters, 423, 63.

    Article  Google Scholar 

  69. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Physical Review Letters, 78, 1667.

    Article  CAS  Google Scholar 

  70. Nie, S., & Emory, S. R. (1997). Science, 275, 1102.

    Article  CAS  Google Scholar 

  71. Brule, T., Lelievre, H. Y., Bouhelier, A., Margueritat, J., Markey, L., Leray, A., Dereux, A., & Finot, E. (2014). Journal of Physical Chemistry C, 118, 17975.

    Article  CAS  Google Scholar 

  72. Chu, Y., Zhu, W., Wang, D., & Crozier, K. B. (2011). Optics Express, 19, 20054.

    Article  CAS  Google Scholar 

  73. Ahmed, A., & Gordon, R. (2011). Nano Letters, 11, 1800.

    Article  CAS  Google Scholar 

  74. Cançado, L. G., & Novotny, L. (2016). Observing the angular distribution of Raman scattered fields. ACS Nano, 10, 1722.

    Article  Google Scholar 

  75. Karaveli, S., Wang, S., Xiao, G., & Zia, R. (2013). ACS Nano, 7, 7165.

    Article  CAS  Google Scholar 

  76. Rao, A. M., Jorio, A., Pimenta, M. A., Dantas, M. S. S., Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2000). Physical Review Letters, 84, 1820.

    Article  CAS  Google Scholar 

  77. Chen, G., Sumanasekera, G. U., Pradhan, B. K., Gupta, R., Eklunf, P. C., Bronikowski, M. J., & Smalley, R. E. (2002). Journal of Nanoscience and Nanotechnology, 2, 621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmnabh Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, P., Dubey, S.K. (2018). Raman Spectroscopy: A Potential Characterization Tool for Carbon Materials. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_11

Download citation

Publish with us

Policies and ethics