Skip to main content
Log in

Magnetically active Fe3O4 nanorods loaded with tissue plasminogen activator for enhanced thrombolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Systemic thrombolysis with intravenous tissue plasminogen activator (tPA) remains the only proven treatment that is effective in improving the clinical outcome of patients with acute ischemic stroke. However, thrombolytic therapy has some major limitations such as hemorrhage, neurotoxicity, and the short time window for the treatment. In this study, we designed iron oxide (Fe3O4) nanorods loaded with 6% tPA, which could be released within ~30 min. The Fe3O4 nanorods could be targeted to blood clots under magnetic guidance. In addition, the release of tPA could be significantly increased using an external rotating magnetic field, which subsequently resulted in a great improvement in the thrombolytic efficiency. Systematic and quantitative studies revealed the fundamental physical processes involved in the enhanced thrombolysis, while the in vitro thrombolysis assay showed that the proposed strategy could improve thrombolysis and recanalization rates and reduce the risk of tPA-mediated hemorrhage in vivo. Such a strategy will be very useful for the treatment of ischemic stroke and other deadly thrombotic diseases such as myocardial infarction and pulmonary embolism in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jørgensen, H. S.; Nakayama, H.; Raaschou, H. O.; Olsen, T. S. Stroke. Neurologic and functional recovery the Copenhagen Stroke Study. Phys. Med. Rehabil. Clin. N. Am. 1999, 10, 887–906.

    Google Scholar 

  2. Furie, B.; Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 2008, 359, 938–949.

    Article  Google Scholar 

  3. Brott, T.; Bogousslavsky, J. Treatment of acute ischemic stroke. N. Engl. J. Med. 2000, 343, 710–722.

    Article  Google Scholar 

  4. Adams, H. P., Jr.; del Zoppo, G.; Alberts, M. J.; Bhatt, D. L.; Brass, L.; Furlan, A.; Grubb, R. L.; Higashida, R. T.; Jauch, E. C.; Kidwell, C. et al. Guidelines for the early management of adults with ischemic stroke. Stroke 2007, 38, 1655–1711.

    Article  Google Scholar 

  5. Clark, W. M.; Wissman, S.; Albers, G. W.; Jhamandas, J. H.; Madden, K. P.; Hamilton, S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: A randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. JAMA 1999, 282, 2019–2026.

    Article  Google Scholar 

  6. Ogawa, A.; Mori, E.; Minematsu, K.; Taki, W.; Takahashi, A.; Nemoto, S.; Miyamoto, S.; Sasaki, M.; Inoue, T. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: The middle cerebral artery embolism local fibrinolytic intervention trial (MELT) Japan. Stroke 2007, 38, 2633–2639.

    Article  Google Scholar 

  7. Hua, X.; Zhou, L.; Liu, P.; He, Y.; Tan, K. B.; Chen, Q. H.; Gao, Y. J.; Gao, Y. H. In vivo thrombolysis with targeted microbubbles loading tissue plasminogen activator in a rabbit femoral artery thrombus model. J. Thromb. Thrombolysis 2014, 38, 57–64.

    Article  Google Scholar 

  8. Petit, B.; Yan, F.; Tranquart, F.; Allémann, E. Microbubbles and ultrasound-mediated thrombolysis: A review of recent in vitro studies. J. Drug Deliv. Sci. Tec. 2012, 22, 381–392.

    Article  Google Scholar 

  9. Korin, N.; Kanapathipillai, M.; Matthews, B. D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S. A.; Bhatta, D. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012, 337, 738–742.

    Article  Google Scholar 

  10. McCarthy, J. R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 2008, 60, 1241–1251.

    Article  Google Scholar 

  11. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

    Article  Google Scholar 

  12. Voros, E.; Cho, M. J.; Ramirez, M.; Palange, A. L.; De Rosa, E.; Key, J.; Garami, Z.; Lumsden, A. B.; Decuzzi, P. TPA immobilization on iron oxide nanocubes and localized magnetic hyperthermia accelerate blood clot lysis. Adv. Funct. Mater. 2015, 25, 1709–1718.

    Article  Google Scholar 

  13. Cheng, R.; Huang, W. J.; Huang, L. J.; Yang, B.; Mao, L. D.; Jin, K. L.; ZhuGe, Q. C.; Zhao, Y. P. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano 2014, 8, 7746–7754.

    Article  Google Scholar 

  14. Chen, J. P.; Yang, P. C.; Ma, Y. H.; Tu, S. J.; Lu, Y. J. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int. J. Nanomed. 2012, 7, 5137–5149.

    Article  Google Scholar 

  15. Xie, Y. M.; Kaminski, M. D.; Torno, M. D.; Finck, M. R.; Liu, X. Q.; Rosengart, A. J. Physicochemical characteristics of magnetic microspheres containing tissue plasminogen activator. J. Magn. Magn. Mater. 2007, 311, 376–378.

    Article  Google Scholar 

  16. Kempe, H.; Kempe, M. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 2010, 31, 9499–9510.

    Article  Google Scholar 

  17. Zhao, Y. P.; Ye, D. X.; Wang, G. C.; Lu, T. M. Novel nanocolumn and nano-flower arrays by glancing angle deposition. Nano Lett. 2002, 2, 351–354.

    Article  Google Scholar 

  18. Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; VCH: Weinheim, New York, 1996.

    Google Scholar 

  19. Adams, H. P.; del Zoppo, G.; Alberts, M. J.; Bhatt, D. L.; Brass, L.; Furlan, A.; Grubb, R. L.; Higashida, R. T.; Jauch, E. C.; Kidwell, C. et al. Guidelines for the early management of adults with ischemic stroke. Stroke 2007, 38, 1655–1711.

    Article  Google Scholar 

  20. Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K. R.; Medeghri, Z.; Machnig, T. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329.

    Article  Google Scholar 

  21. Armstrong, P. W.; Collen, D. Fibrinolysis for acute myocardial infarction: Current status and new horizons for pharmacological reperfusion, Part 2. Circulation 2001, 103, 2987–2992.

    Article  Google Scholar 

  22. Chandler, W. L.; Alessi, M. C.; Aillaud, M. F.; Henderson, P.; Vague, P.; Juhan-Vague, I. Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: Relationship to elevated TPA antigen in patients with high PAI-1 activity levels. Circulation 1997, 96, 761–768.

    Article  Google Scholar 

  23. Cameron, H. A.; McEwen, B. S.; Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 1995, 15, 4687–4692.

    Google Scholar 

  24. Chen, J. P.; Yang, P. C.; Ma, Y. H.; Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohyd. Polym. 2011, 84, 364–372.

    Article  Google Scholar 

  25. Diamond, S. L. Engineering design of optimal strategies for blood clot dissolution. Annu. Rev. Biomed. Eng. 1999, 1, 427–462.

    Article  Google Scholar 

  26. Diamond, S. L.; Anand, S. Inner clot diffusion and permeation during fibrinolysis. Biophys. J. 1993, 65, 2622–2643.

    Article  Google Scholar 

  27. Pleydell, C. P.; David, T.; Smye, S. W.; Berridge, D. C. A mathematical model of post-canalization thrombolysis. Phys. Med. Biol. 2002, 47, 209–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qichuan ZhuGe, Kunlin Jin or Yiping Zhao.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Huang, W., Huang, S. et al. Magnetically active Fe3O4 nanorods loaded with tissue plasminogen activator for enhanced thrombolysis. Nano Res. 9, 2652–2661 (2016). https://doi.org/10.1007/s12274-016-1152-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1152-4

Keywords

Navigation