Skip to main content

Advertisement

Log in

In vivo thrombolysis with targeted microbubbles loading tissue plasminogen activator in a rabbit femoral artery thrombus model

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The increasingly high incidence of ischemic stroke caused by thrombosis of the arterial vessels is one of the major factors that threaten people’s health and lives in the world. The present treatments for thrombosis are unsatisfactory yet. We developed the microbubbles loading tissue plasminogen activator (tPA) and their in vitro thrombolysis efficacy under ultrasound exposure has been proved previously. We tried to investigate their thrombolysis effect in vivo in this present study. Thrombus model was made by clamping bilateral femoral arteries in 70 arteries of 40 rabbits. The targeted tPA-loaded microbubbles were made by lyophilization, taking arginine-glycine-aspartic acid-serine peptide as the targeting ligand. Its thrombolysis efficacy, calculated as count rate and efficiency rate of recanalization, was evaluated by Pearson’s χ2 and One-way ANOVA, respectively. The count rate of recanalization of the targeted tPA-loaded microbubbles under ultrasound exposure (70 %) was similar to that of the combination of tPA, microbubbles and ultrasound exposure (80 %) (P = 0.61), while its tPA dosage (0.06 mg/kg) was much less than that of latter (0.9 mg/kg). Its efficiency rate of recanalization was the highest among all groups (53.22 ± 40.39 %) (P < 0.01). Ultrasound-induced targeted tPA-loaded microbubbles release is a promising thrombolytic method with satisfactory thrombolytic efficacy, lowered tPA dose and potentially decreased hemorrhagic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caplan LR (2006) Stroke thrombolysis. Circulation 114:187–190

    Article  PubMed  Google Scholar 

  2. Wardlaw JM, Koumellis P, Liu M (2013) Thrombolysis (different doses, routes of administration and agents) for acute ischaemic stroke. Cochrane Database Syst Rev 5:CD000514. doi:10.1002/14651858.CD000514.pub3

    PubMed  Google Scholar 

  3. Pan SM, Liu JF, Liu M, Shen S, Li HJ, Dai LH, Chen XJ (2012) Efficacy and safety of a modified intravenous recombinant tissue plasminogen activator regimen in Chinese patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. doi:10.1016/j.jstrokecerebrovasdis

    Google Scholar 

  4. Crumrine RC, Marder VJ, Taylor GM, Lamanna JC, Tsipis CP, Scuderi P, Petteway SR Jr, Arora V (2011) Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Exp Transl Stroke Med 3:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hajar K, Kerr DM, Lees KR (2011) Thrombolysis for acute ischemic stroke. J Vasc Surg 54:901–907

    Article  Google Scholar 

  6. Kramer C, Aguilar MI, Hoffman-Snyder C, Wellik KE, Wingerchuk DM, Demaerschalk BM (2011) Safety and efficacy of ultrasound-enhanced thrombolysis in the treatment of acute middle cerebral artery infarction: a critically appraised topic. Neurologist 17:346–351

    Article  PubMed  Google Scholar 

  7. Cherniavsky EA, Strakha IS, Adzerikho IE, Shkumatov VM (2011) Effects of low frequency ultrasound on some properties of fibrinogen and its plasminolysis. BMC Biochem 12:60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Xie F, Slikkerveer J, Gao S, Lof J, Kamp O, Unger E, Radio S, Matsunaga T, Porter TR (2011) Coronary and microvascular thrombolysis with guided diagnostic ultrasound and microbubbles in acute ST segment elevation myocardial infarction. J Am Soc Echocardiogr 24:1400–1408

    Article  PubMed Central  PubMed  Google Scholar 

  9. Everbach EC, Francis CW (2000) Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 26:1153–1160

    Article  CAS  PubMed  Google Scholar 

  10. Datta S, Coussios CC, McAdory LE et al (2006) Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 32:1257–1267

    Article  PubMed Central  PubMed  Google Scholar 

  11. Prokop AF, Soltani A, Roy RA (2007) Cavitational mechanisms in ultrasound-accelerated fibrinolysis. Ultrasound Med Biol 33:924–933

    Article  PubMed  Google Scholar 

  12. Datta S, Coussios C, Ammi AY et al (2008) Ultrasound-enhanced thrombolysis using Definity® as a cavitation nucleation agent. Ultrasound Med Biol 34:1421–1433

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hitchcock K, Ivancevich N, Haworth K et al (2011) Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 37:1240–1251

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sutton JT, Haworth KJ, Pyne-Geithman G et al (2013) Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 10:573–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Escoffre JM, Piron J, Novell A, Bouakaz A (2011) Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol Pharm 8:799–806

    Article  CAS  PubMed  Google Scholar 

  16. Cool SK, Geers B, Lentacker I, De Smedt SC, Sanders NN (2013) Enhancing nucleic acid delivery with ultrasound and microbubbles. Methods Mol Biol 948:195–204

    CAS  PubMed  Google Scholar 

  17. Borden MA, Streeter JE, Sirsi SR, Dayton PA (2013) In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles. Mol Imaging 12:1–8

    PubMed  Google Scholar 

  18. Novell A, Escoffre J-M, Bouakaz A (2013) Ultrasound contrast imaging in cancer—technical aspects and prospects. Curr Mol Imaging 2:77–88

    Article  Google Scholar 

  19. Laing ST, Moody MR, Kim H, Smulevitz B, Huang SL, Holland CK, McPherson DD, Klegerman ME (2012) Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 30:629–635

    Article  Google Scholar 

  20. Laing ST, Moody M, Smulevitz B, Kim H, Kee P, Huang S, Holland CK, McPherson DD (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model–brief report. Arterioscler Thromb Vasc Biol 31:1357–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hua X, Liu P, Gao YH, Zhou LN, Liu Z, Li X, Zhou SW, Gao YJ (2010) Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 30:29–35

    Article  PubMed  Google Scholar 

  22. Liu P, Wang X, Zhou S, Hua X, Liu Z, Gao Y (2011) Effects of a novel ultrasound contrast agent with long persistence on right ventricular pressure: comparison with SonoVue. Ultrasonics 51:210–214

    Article  CAS  PubMed  Google Scholar 

  23. Tola M, Yurdakul M, Ozbulbul NI (2012) B-flow imaging for the measurement of residual lumen diameter of renal artery stenosis. J Clin Ultrasound 40:85–90

    Article  PubMed  Google Scholar 

  24. Dupont WD, Plummer WD (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601

    Article  CAS  PubMed  Google Scholar 

  25. Powers CM (2011) Use of alteplase beyond 3 hours of ischemic stroke onset. Adv Emerg Nurs J 33:65–70

    Article  PubMed  Google Scholar 

  26. Graham GD (2003) Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke 34:2847–2850

    Article  CAS  PubMed  Google Scholar 

  27. Wardlaw JM, Murray V, Berge E, Del Zoppo GJ (2009) Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 7:CD000213

    Google Scholar 

  28. Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32:48–55

    Article  CAS  PubMed  Google Scholar 

  29. Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, Götberg M, Olsson T (2010) The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 31:9499–9510

    Article  CAS  PubMed  Google Scholar 

  30. Kim JY, Kim JK, Park JS, Byun Y, Kim CK (2009) The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 30:5751–5756

    Article  CAS  PubMed  Google Scholar 

  31. Wang SS, Chou NK, Chung TW (2009) The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study. J Biomed Mater Res A 91:753–761

    Article  PubMed  Google Scholar 

  32. Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ (2012) Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int J Nanomedicine 7:5137–5149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 148:13–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Liao AH, Li YK, Lee WJ, Wu MF, Liu HL, Kuo ML (2012) Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging. Ultrasound Med Biol 38:1938–1948

    Article  PubMed  Google Scholar 

  35. Feril LB Jr, Tachibana K (2012) Use of ultrasound in drug delivery systems: emphasis on experimental methodology and mechanisms. Int J Hyperth 28:282–289

    Article  CAS  Google Scholar 

  36. Tinkov S, Bekeredjian R, Winter G, Coester C (2009) Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 98:1935–1961

    Article  CAS  PubMed  Google Scholar 

  37. Amaral-Silva A, Piñeiro S, Molina CA (2011) Sonothrombolysis for the treatment of acute stroke: current concepts and future directions. Expert Rev Neurother 11:265–273

    Article  PubMed  Google Scholar 

  38. Leeman JE, Kim JS, Yu FT, Chen X, Kim K, Wang J, Chen X, Villanueva FS, Pacella JJ (2012) Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis. Ultrasound Med Biol 38:1589–1598

    Article  PubMed  Google Scholar 

  39. Ren ST, Lon LH, Wang M, Li YP, Qin H, Zhang H, Jing BB, Li YX, Zang WJ, Wang B, Shen XL (2012) Thrombolytic effects of combined therapy with targeted microbubbles and ultrasound in a 6 h cerebral thrombosis rabbit model. J Thromb Thrombolysis 33:74–81

    Article  CAS  PubMed  Google Scholar 

  40. Hagisawa K, Nishioka T, Suzuki R, Maruyama K, Takase B, Ishihara M, Kurita A, Yoshimoto N, Nishida Y, Iida K, Luo H, Siegel RJ (2013) Thrombus-targeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: in vitro and in vivo study. J Thromb Haemost 11:1565–1573

    Article  CAS  PubMed  Google Scholar 

  41. See Sutton JT, Ivancevich NM, Perrin SR, Vela DC, Holland CK (2013) Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 39:813–824

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Zhaoyang Zhong for professional pathological examination and Prof. Zheng Liu and Prof. Rui Li for expert technical assistance. This work was supported by the National Natural Science Foundation of China [Grant numbers 30500478, 30801060].

Conflict of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, X., Zhou, L., Liu, P. et al. In vivo thrombolysis with targeted microbubbles loading tissue plasminogen activator in a rabbit femoral artery thrombus model. J Thromb Thrombolysis 38, 57–64 (2014). https://doi.org/10.1007/s11239-014-1071-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-014-1071-8

Keywords

Navigation