Skip to main content
Log in

Nonlinear infrared plasmonic waveguide arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2008, 2, 496–500.

    Article  Google Scholar 

  2. Sorger, V. J.; Ye, Z. L.; Oulton, R. F.; Wang, Y.; Bartal, G.; Yin, X. B.; Zhang, X. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2011, 2, 331.

    Google Scholar 

  3. Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O’Brien, K.; Wang, Y.; Zhang, X. Adiabatic eliminationbased coupling control in densely packed subwavelength waveguides. Nat. Commun. 2015, 6, 7565.

    Google Scholar 

  4. Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Google Scholar 

  5. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808.

    Google Scholar 

  6. Naik, G. V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range ai][Invited]. Opt. Mater. Express 2011, 1, 1090–1099.

    Google Scholar 

  7. Emani, N. K.; Chung, T.-F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.

    Article  Google Scholar 

  8. Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

    Google Scholar 

  9. Pendry, J. B.; Martín-Moreno, L.; Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848.

    Article  Google Scholar 

  10. Hibbins, A. P.; Evans, B. R.; Sambles, J. R. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672.

    Article  Google Scholar 

  11. Maier, S. A.; Andrews, S. R.; Martín-Moreno, L.; García- Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 2006, 97, 176805.

    Article  Google Scholar 

  12. Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Elect. 1973, 9, 919–933.

    Article  Google Scholar 

  13. Rudnick, J.; Stern, E. A. Second-harmonic radiation from metal surfaces. Phys. Rev. B 1971, 4, 4274–4290.

    Google Scholar 

  14. Ciraci, C.; Poutrina, E.; Scalora, M.; Smith, D. R. Secondharmonic generation in metallic nanoparticles: Clarification of the role of the surface. Phys. Rev. B 2012, 86, 115451.

    Google Scholar 

  15. Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

    Article  Google Scholar 

  16. O’Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; Yin, X. B.; Zhang, X. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 2015, 14, 379–383.

    Google Scholar 

  17. Yariv, A. Quantum Electronics, 3rd ed.; John WieLy & Sons: New York, 1989; pp 389.

    Google Scholar 

  18. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 1969, 182, 539–554.

    Article  Google Scholar 

  19. Shen, J.-T.; Catrysse, P. B.; Fan, S. H. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 2005, 94, 197401.

    Article  Google Scholar 

  20. Orlov, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Complex band structure of nanostructured metal-dielectric metamaterials. Opt. Express 2013, 21, 1593–1598.

    Article  Google Scholar 

  21. Yao, J.; Yang, X. D.; Yin, X. B.; Bartal, G.; Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. USA 2011, 108, 11327–11331.

    Article  Google Scholar 

  22. Afshar V, S.; Monro, T. M. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express 2009, 17, 2298–2318.

    Article  Google Scholar 

  23. De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382–387.

    Article  Google Scholar 

  24. Berini, P.; De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 2012, 6, 16–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salandrino, A., Wang, Y. & Zhang, X. Nonlinear infrared plasmonic waveguide arrays. Nano Res. 9, 224–229 (2016). https://doi.org/10.1007/s12274-016-0994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0994-0

Keywords

Navigation