Skip to main content
Log in

Long-range all-dielectric plasmonic waveguide in mid-infrared

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we introduce the modal analysis of hybrid plasmonic waveguides in the mid-infrared region. In our plasmonic waveguide, the metal is replaced by doped silicon allowing for low-loss, subwavelength confinement of optical modes that can be easily integrated with standard silicon technology. In addition, our waveguide characteristics can be easily tuned along the wavelength by changing the doping concentration of the doped silicon layer. Manipulating the dimensions of the waveguide, we can effectively change the propagation distance and the mode confinement. The simulation results show a maximum propagation distance of 220 µm and modal area of 5–500 times smaller than the diffraction limit area. Moreover, the wavelength dependence of the effective indices of the hybrid structures modes around the doped silicon resonance was investigated. Our results showed that our structures exhibit anomalous dispersion and can support slow and fast light. Also, a comparison has been made between our hybrid structure and the conventional insulator–metal–insulator (IMI) waveguide with metal replaced by our doped silicon. This comparison shows that our hybrid structure is a compromise between the modal area and the propagation distance of the IMI structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  2. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  4. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  5. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  6. R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008)

    Article  Google Scholar 

  7. Y. Kou, F. Ye, X. Chen, Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Opt. Express 19, 11746–11752 (2011)

    Article  ADS  Google Scholar 

  8. L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao et al., A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration. J. Lightwave Technol. 30, 163–168 (2012)

    Article  ADS  Google Scholar 

  9. V. Singh, P.T. Lin, N. Patel, H.T. Lin, L. Li, Y. Zou et al., Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 15, 014603 (2014)

    Article  Google Scholar 

  10. R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photonics 4, 495–497 (2010)

    Article  ADS  Google Scholar 

  11. L. Labadie, O. Wallner, Mid-infrared guided optics: a perspective for astronomical instruments. Opt. Express 17, 1947–1962 (2009)

    Article  ADS  Google Scholar 

  12. G. C. Holst, S. W. McHugh, Review of thermal imaging system performance, in Aerospace Sensing (1992), pp. 78–84

  13. G. Mashanovich, M. Nedeljkovic, M. Milošević, Y. Hu, T.B. Masaud, E. Jaberansary, et al., Mid-infrared photonics devices in SOI, in SPIE OPTO (2013), pp. 86290 J-86290 J-6

  14. M.M. Milošević, P.S. Matavulj, P.Y. Yang, A. Bagolini, G.Z. Mashanovich, Rib waveguides for mid-infrared silicon photonics. JOSA B 26, 1760–1766 (2009)

    Article  ADS  Google Scholar 

  15. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher et al., Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express 18, 12127–12135 (2010)

    Article  ADS  Google Scholar 

  16. R.S. El Shamy, H. Mossad, M.A. Swillam, Dispersion engineering of silicon-on-sapphire (SOS) waveguides for mid-infrared applications, in SPIE OPTO (2016), pp. 97520Q-97520Q-7

  17. Y.C. Chang, Design, Fabrication and Characterization of Mid-Infrared Strip Waveguide for Laser Spectroscopy in Liquid Environments (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Lausanne, 2012)

    Google Scholar 

  18. R. Gamal, Y. Ismail, M.A. Swillam, Silicon waveguides at the mid-infrared. J. Lightwave Technol. 33, 3207–3214 (2015)

    Article  ADS  Google Scholar 

  19. J. Mu, R. Soref, L.C. Kimerling, J. Michel, Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding. Appl. Phys. Lett. 104, 031115 (2014)

    Article  ADS  Google Scholar 

  20. S. Law, D. Adams, A. Taylor, D. Wasserman, Mid-infrared designer metals. Opt. Express 20, 12155–12165 (2012)

    Article  ADS  Google Scholar 

  21. J.C. Ginn, R.L. Jarecki Jr., E.A. Shaner, P.S. Davids, Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011)

    Article  ADS  Google Scholar 

  22. A.O. Zaki, K. Kirah, M.A. Swillam, Integrated optical sensor using hybrid plasmonics for lab on chip applications. J. Opt. 18, 085803 (2016)

    Article  ADS  Google Scholar 

  23. A.O. Zaki, K. Kirah, M.A. Swillam, Hybrid plasmonic electro-optical modulator. Appl. Phys. A 122, 1–7 (2016)

    Article  Google Scholar 

  24. R.W. Boyd, Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908–1915 (2009)

    Article  ADS  MATH  Google Scholar 

  25. T. Yang, K.B. Crozier, Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index. Opt. Express 17, 1136–1143 (2009)

    Article  ADS  Google Scholar 

  26. M.A. Swillam, A.S. Helmy, Analysis and applications of 3D rectangular metallic waveguides. Opt. Express 18, 19831–19843 (2010)

    Article  ADS  Google Scholar 

  27. COMSOLMultiphysics (2016) https://www.comsol.com/comsol-multiphysics

  28. J. Burke, G. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Information Technology Industry Development Agency (ITIDA) under the ITAC Program CFP#70.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Swillam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Shamy, R.S., Mossad, H. & Swillam, M.A. Long-range all-dielectric plasmonic waveguide in mid-infrared. Appl. Phys. A 123, 52 (2017). https://doi.org/10.1007/s00339-016-0636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0636-0

Keywords

Navigation