Skip to main content
Log in

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol·h–1. Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  2. Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923–930.

    Article  Google Scholar 

  3. Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.

    Article  Google Scholar 

  4. Li, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470–482.

    Article  Google Scholar 

  5. Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhang, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li. J. H. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J. Mater. Chem. 2012, 22, 1539–1546.

    Article  Google Scholar 

  6. Zhang, R. Y.; Shen, D. K.; Xu, M.; Feng, D.; Li, W.; Zheng, G. F.; Elzatahry, A. A.; Zhao, D. Y. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301725.

  7. Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510–8512.

    Article  Google Scholar 

  8. Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

    Article  Google Scholar 

  9. Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

    Article  Google Scholar 

  10. Castelli, I. E.; Landis, D. D.; Thygesen, K. S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T, F.; Jacobsen, K. W. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 2012, 5, 9034–9043.

    Article  Google Scholar 

  11. Bian, Z. F.; Tachikawa, T. T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

    Article  Google Scholar 

  12. Zhou, W.; Lin, L. J.; Wang, W. J.; Zhang, L. L.; Wu, Q.; Li, J. H.; Guo, L. Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C, 2011, 115, 7126–7133.

    Article  Google Scholar 

  13. Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007–3014.

    Article  Google Scholar 

  14. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

    Article  Google Scholar 

  15. Jung, M. J.; Nam, K. H.; Chung, Y. M.; Boo, J. H.; Han, J. G. The physiochemical properties of TiOxNy films with controlled oxygen partial pressure. Surf. Coat. Technol. 2003, 171, 71–74.

    Article  Google Scholar 

  16. Hou, Y. L.; Kondoh, H.; Ohta, T. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 202–208.

    Article  Google Scholar 

  17. Ivanova, A.; Fattakhova-Rohlfing, D.; Kayaalp, B. E.; Rathouský, J.; Bein, T. Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J. Am. Chem. Soc. 2014, 136, 5930–5937.

    Article  Google Scholar 

  18. Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y. Y.; Zhao, D. Y.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co3O4@Carbon nanotube arrays for high-performance lithiumion batteries. Angew. Chem., Int. Ed. 2015, 54, 7060–7064.

    Article  Google Scholar 

  19. Wang, H.; Gao, J.; Guo, T. Q.; Wang, R. M.; Guo, L.; Liu, Y.; Li, J. H. Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties. Chem. Commun. 2012, 48, 275–277.

    Article  Google Scholar 

  20. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  Google Scholar 

  21. Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743.

    Article  Google Scholar 

  22. Li, W.; Wu, Z. X.; Wang, J X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.

    Article  Google Scholar 

  23. Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Qu or Guofeng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Qu, Y., Pan, K. et al. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 9, 726–734 (2016). https://doi.org/10.1007/s12274-015-0951-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0951-3

Keywords

Navigation