Skip to main content
Log in

Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethanol showed that all the PBGs positions red-shifted; however, the transmittance of the PBG bottom showed different trends when the PBGs were located in different wavelength regions. In the near infrared region, liquid ethanol has strong light absorption, and, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs first increased and then decreased. However, in the visible light region, liquid ethanol has little light absorption, and thus, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs increased gradually all the time. Simulated results were consistent with the experimental results. The capillary condensation of organic vapors in the pores of porous alumina accounted for the change in the PBG bottom transmittance. The nonnegligible light absorption of the organic vapors was the cause of the decrease in the transmittance. The results for porous alumina PC adsorbing methanol, acetone, and toluene further confirmed the influences of light absorption on the PBG bottomed transmittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062.

    Article  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.

    Article  Google Scholar 

  3. Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.

    Article  Google Scholar 

  4. Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Porous silicon-based optical microsensors for volatile organic analytes: Effect of surface chemistry on stability and specificity. Adv. Funct. Mater. 2010, 20, 2874–2883.

    Article  Google Scholar 

  5. Ko, D. H.; Tumbleston, J. R.; Zhang, L.; Williams, S.; DeSimone, J. M.; Lopez, R.; Samulski, E. T. Photonic crystal geometry for organic solar cells. Nano Lett. 2009, 9, 2742–2746.

    Article  Google Scholar 

  6. Guldin, S.; Hüttner, S.; Kolle, M.; Welland, M. E.; Müller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Tétreault, N. Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 2010, 10, 2303–2309.

    Article  Google Scholar 

  7. Colodrero, S.; Forneli, A.; López-López, C.; Pellejà, L.; Míguez, H.; Palomares, E. Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 2012, 22, 1303–1310.

    Article  Google Scholar 

  8. Dowling, J. P.; Scalora, M.; Bloemer, M. J.; Bowden, C. M. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys. 1994, 75, 1896–1899.

    Article  Google Scholar 

  9. Akahane, Y.; Asano, T.; Song, B. S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944–947.

    Article  Google Scholar 

  10. Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K. Lasing from twodimensional photonic crystals using anodic porous alumina. Adv. Mater. 2006, 18, 213–216.

    Article  Google Scholar 

  11. Wang, B.; Fei, G. T.; Wang, M.; Kong, M. G.; Zhang, L. D. Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007, 18, 365601.

    Article  Google Scholar 

  12. Guo, D. L.; Fan, L. X.; Wang, F. H.; Huang, S. Y.; Zou, X. W. Porous anodic aluminum oxide Bragg stacks as chemical sensors. J. Phys. Chem. C 2008, 112, 17952–17956.

    Article  Google Scholar 

  13. Wang, Z. H.; Zhang, J. H.; Xie, J.; Li, C.; Li, Y. F.; Liang, S.; Tian, Z. C.; Wang, T. Q.; Zhang, H.; Li, H. B.; et al. Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv. Funct. Mater. 2010, 20, 3784–3790.

    Article  Google Scholar 

  14. Choi, S. Y.; Mamak, M.; von Freymann, G.; Chopra, N.; Ozin, G. A. mesoporous Bragg stack color tunable sensors. Nano Lett. 2006, 6, 2456–2461.

    Article  Google Scholar 

  15. Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 2013, 1, 5285–5291.

    Article  Google Scholar 

  16. Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537.

    Article  Google Scholar 

  17. Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Ouyang, H. M.; Zhang, L. D. Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 2014, 4, 3601.

    Google Scholar 

  18. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, 2008.

    Google Scholar 

  19. Zhang, Y. Q.; Wang, J. X.; Ji, Z. Y.; Hu, W. P.; Jiang, L.; Song, Y. L.; Zhu, D. B. Solid-state fluorescence enhancement of organic dyes by photonic crystals. J. Mater. Chem. 2007, 17, 90–94.

    Article  Google Scholar 

  20. Casanova, F.; Chiang, C. E.; Li, C. P.; Roshchin, I. V.; Ruminski, A. M.; Sailor, M. J.; Schuller, I. K. Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology 2008, 19, 315709.

    Article  Google Scholar 

  21. Bruschi, L.; Mistura, G.; Liu, L. F.; Lee, W.; Gösele, U.; Coasne, B. Capillary condensation and evaporation in alumina nanopores with controlled modulations. Langmuir 2010, 26, 11894–11898.

    Article  Google Scholar 

  22. Wallacher, D.; Künzner, N.; Kovalev, D.; Knorr, N.; Knorr, K. Capillary condensation in linear mesopores of different shape. Phys. Rev. Lett. 2004, 92, 195704.

    Article  Google Scholar 

  23. Horikawa, T.; Do, D. D.; Nicholson, D. Capillary condensation of adsorbates in porous materials. Adv. Colloid Interfac. 2011, 169, 40–58.

    Article  Google Scholar 

  24. Barthelemy, P.; Ghulinyan, M.; Gaburro, Z.; Toninelli, C.; Pavesi, L.; Wiersma, D. S. Optical switching by capillary condensation. Nat. Photonics 2007, 1, 172–175.

    Article  Google Scholar 

  25. Siderius, D. W.; Shen, V. K. Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J. Phys. Chem. C 2013, 117, 5861–5872.

    Article  Google Scholar 

  26. Kierlik, E.; Monson, P. A.; Rosinberg, M. L.; Sarkisov, L.; Tarjus, G. Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior. Phys. Rev. Lett. 2001, 87, 055701.

    Article  Google Scholar 

  27. Broseta, D.; Barré, L.; Vizika, O.; Shahidzadeh, N.; Guilbaud, J.-P.; Lyonnard, S. Capillary condensation in a fractal porous medium. Phys. Rev. Lett. 2001, 86, 5313–5316.

    Article  Google Scholar 

  28. Jin, C. J.; Cheng, B. Y.; Man, B. Y.; Zhang, D. Z.; Ban, S. Z.; Sun, B.; Li, L. M.; Zhang, X. D.; Zhang, Z. Q. Twodimensional metallodielectric photonic crystal with a large band gap. Appl. Phys. Lett. 1999, 75, 1201–1203.

    Article  Google Scholar 

  29. Hossain, M. M.; Chen, G. Y.; Jia, B. H.; Wang, X. H.; Gu, M. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals. Opt. Express 2010, 18, 9048–9054.

    Article  Google Scholar 

  30. Zhang, Z. M.; Du, G. Q.; Jiang, H. T.; Li, Y. H.; Wang, Z. S.; Chen, H. Complete absorption in a heterostructure composed of a metal and a doped photonic crystal. J. Opt. Soc. Am. B 2010, 27, 909–913.

    Article  Google Scholar 

  31. Sigalas, M. M.; Chan, C. T.; Ho, K. M.; Soukoulis C. M. Metallic photonic band-gap materials. Phys. Rev. B 1995, 52, 11744–11750.

    Article  Google Scholar 

  32. Shang, G. L.; Fei, G. T.; Xu, S. H.; Yan, P.; Zhang L. D. Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode. Mater. Lett. 2013, 110, 156–159.

    Article  Google Scholar 

  33. Bendickson, J. M.; Dowling, J. P.; Scalora, M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional photonic band-gap structures. Phys. Rev. E 1996, 53, 4107–4121.

    Article  Google Scholar 

  34. Choy, T. C. Effective Medium Theory: Principles and Applications; Oxford University Press: Oxford, 1999.

    Google Scholar 

  35. Casanova, F.; Chiang, C. E.; Li, C. P.; Schuller, I. K. Direct observation of cooperative effects in capillary condensation: The hysteretic origin. Appl. Phys. Lett. 2007, 91, 243103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Fei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, G., Fei, G., Li, Y. et al. Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals. Nano Res. 9, 703–712 (2016). https://doi.org/10.1007/s12274-015-0949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0949-x

Keywords

Navigation