Skip to main content
Log in

Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdCl2 and Ni(acac)2 (acac = acetylacetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, D. S.; Li, Y. D. One-pot protocol for Au-base hybrid magnetic nanostructure via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

    Article  Google Scholar 

  2. Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822–835.

    Article  Google Scholar 

  3. Zhu, M. Z.; Qian, H. F.; Jin, R. C. Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J. Am. Chem. Soc. 2009, 131, 7220–7221.

    Article  Google Scholar 

  4. Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

    Article  Google Scholar 

  5. Goubet, N.; Pileni, M. P. Negative supracrystals inducing a FCC-BCC transition in gold nanocrystal superlattices. Nano Res. 2014, 7, 171–179.

    Article  Google Scholar 

  6. Sun, L.; Zhang, Z. C.; Xu, B.; Wang, X. One-pot, template-free synthesis of Pd-Pt single-crystalline hollow cubes with enhanced catalytic activity. Chem-Asian J. 2013, 8, 1523–1529.

    Article  Google Scholar 

  7. Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L,; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

    Article  Google Scholar 

  8. Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25-x nanoclusters: The 13th silver atom matters. Angew. Chem. Int. Ed. 2014, 53, 2376–2380.

    Article  Google Scholar 

  9. Snyder, J.; McCue. I.; Livi. K.; Erlebacher, J. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 8633–8645.

    Article  Google Scholar 

  10. Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917–2921.

    Article  Google Scholar 

  11. Zhu, C.; Peng, H. C.; Zeng, J.; Liu, J. Y.; Gu, Z. Z.; Xia, Y. N. Facile synthesis of gold wavy nanowires and investigation of their growth mechanism. J. Am. Chem. Soc. 2012, 134, 20234–20237.

    Article  Google Scholar 

  12. Ahmadi, M.; Behafaid, F.; Cui, C. H.; Strasser, P.; Cuenya, B. R. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: Chemical state effects. ACS Nano 2013, 7, 9195–9204.

    Article  Google Scholar 

  13. Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

    Article  Google Scholar 

  14. Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.

    Article  Google Scholar 

  15. Yu, W. T.; D. Porosoff, M. G.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

    Article  Google Scholar 

  16. Xi, P. X.; Cao, Y.; Yang, F. C.; Ma, C.; Chen, F. J.; Yu, S.; Wang, S.; Zeng, Z. Z.; Zhang, X. Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction. Nanoscale 2013, 5, 6124–6130.

    Article  Google Scholar 

  17. Kang, S. W.; Lee, Y. W.; Park, Y.; Choi, B. S.; Hong, J. W.; Park, K. H.; Han, S. W. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance. ACS Nano 2013, 7, 7945–7955.

    Article  Google Scholar 

  18. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2008, 48, 60–103.

    Article  Google Scholar 

  19. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  20. Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. 2008, 47, 8901–8904.

    Article  Google Scholar 

  21. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  22. Mayers, B.; Jiang, X. C.; Sunderland, D.; Cattle, B.; Xia, Y. N. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J. Am. Chem. Soc. 2003, 125, 13364–13365.

    Article  Google Scholar 

  23. Wu, Y. E.; Wang, D. S.; Zhao, P.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorg. Chem. 2011, 50, 2046–2048.

    Article  Google Scholar 

  24. Lee, K.; Kang, S. W.; Lee, S. U.; Park, K. H.; Lee, Y. W.; Han, S. W. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation. ACS Appl. Mater. Interfaces 2012, 4, 4208–4214.

    Article  Google Scholar 

  25. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  26. Mao, J. J.; Wang, D. S.; Zhao, G. F.; Jia, W.; Li, Y. D. Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid-solid-solution synthetic system according to the electronegativity of alloys. CrystEngComm 2013, 15, 4806–4810.

    Article  Google Scholar 

  27. Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Meng, X. K. Highly catalytic Pd-Ag bimetallic dendrites. J. Phys. Chem. C 2010, 114, 15005–15010.

    Article  Google Scholar 

  28. Tsang, S. C.; Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation. ACS Nano 2008, 2, 2547–2553.

    Article  Google Scholar 

  29. Li, C. C.; Sato, R.; Kanehara, M.; Zeng, H, B.; Bando, Y.; Teranishi, T. Controllable polyol synthesis of uniform palladium icosahedra: Effect of twinned structure on deformation of crystalline lattices. Angew. Chem. Int. Ed. 2009, 48, 6883–6887.

    Article  Google Scholar 

  30. Liu, C.; Rao, X. F.; Zhang, Y. X.; Li, X. M.; Qiu, J. S.; Jin, Z. L. An aerobic and very fast Pd/C-catalyzed ligand-free and aqueous Suzuki reaction under mild conditions. Eur. J. Org. Chem. 2013, 2013, 4345–4350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Li, P., Chong, H. et al. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 7, 1337–1343 (2014). https://doi.org/10.1007/s12274-014-0498-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0498-8

Keywords

Navigation