Skip to main content
Log in

Negative supracrystals inducing a FCC-BCC transition in gold nanocrystal superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The growth of nanocrystal superlattices of 5 nm single domain Au nanocrystals at an air-toluene interface induces formation of well-defined thin films (300–400 nm) with large coherence lengths. High-resolution electron microscopy showed that polyhedral holes (negative supracrystal) were formed on the nanocrystal superlattice surface. Formation of negative supracrystals is attributed to inclusion in the superlattice of organic molecules (dodecanethiol), which are present in concentrated zones at the air-toluene interface. The coexistence of two supracrystalline structures (bcc/fcc) is attributed to diffusion of dodecanethiol molecules resulting in a Bain deformation of the nanocrystal array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gast, A. P. Structure, interactions, and dynamics in tethered chain systems. Langmuir 1996, 12, 4060–4067.

    Article  Google Scholar 

  2. McPherson, A. Introduction to Macromolecular Crystallography; Wiley, 2002.

    Google Scholar 

  3. Singh, G.; Yager, K. G.; Berry, B.; Kim, H. C.; Karim, A. Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films. ACS Nano 2012, 6, 10335–10342.

    Article  Google Scholar 

  4. Malkin, A. J.; Kuznetsov, Y. G.; Land, T. A.; DeYoreo, J. J.; McPherson, A. Mechanisms of growth for protein and virus crystals. Nat. Struct. Biol. 1995, 2, 956–959.

    Article  Google Scholar 

  5. Pileni, M. P. Nanocrystals Forming Mesoscopic Structures; Wiley, 2005.

    Book  Google Scholar 

  6. Kotov, N. A. Nanoparticle Assemblies and Superstructures; Taylor & Francis Group, 2005.

    Book  Google Scholar 

  7. Motte, L.; Billoudet, F.; Pileni, M. P. Self-assembled monolayer of nanosized particles differing by their sizes. J. Phys. Chem. 1995, 99, 16425–16429.

    Article  Google Scholar 

  8. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

    Article  Google Scholar 

  9. Ben-Simon, A.; Eshet, H.; Rabani, E. On the phase behavior of binary mixtures of nanoparticles. ACS Nano 2013, 7, 978–986.

    Article  Google Scholar 

  10. Landman, U.; Luedtke, W. D. Small is different: Energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss. 2004, 125, 1–22.

    Article  Google Scholar 

  11. Eldridge, M. D.; Madden, P. A.; Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 1993, 365, 35–37.

    Article  Google Scholar 

  12. Korgel, B. A.; Fitzmaurice, D. Small-angle X-ray-scattering study of silver-nanocrystal disorder-order phase transitions. Phys. Rev. B 1999, 59, 14191–14201.

    Article  Google Scholar 

  13. Damasceno, P. F.; Engel, M.; Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 2012, 337, 453–457.

    Article  Google Scholar 

  14. Goubet, N.; Pileni, M. P. Analogy between atoms in a nanocrystal and nanocrystals in a supracrystal: Is it real or just a highly probable speculation? J. Phys. Chem. Lett. 2011, 2, 1024–1031.

    Article  Google Scholar 

  15. Macfarlane, R. J.; O’Brien, M. N.; Petrosko, S. H.; Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: Forging a new “table of elements”. Angew. Chem. Int. Edit. 2013, 52, 5688–5698.

    Article  Google Scholar 

  16. Banin, U.; Cao, Y. W.; Katz, D.; Millo, O. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 1999, 400, 542–544.

    Article  Google Scholar 

  17. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  Google Scholar 

  18. Pileni, M. P. Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J. Phys. Chem. C 2007, 111, 9019–9038.

    Article  Google Scholar 

  19. Henry, A. I.; Courty, A.; Pileni, M. P.; Albouy, P. A.; Israelachvili, J. Tuning of solid phase in supracrystals made of silver nanocrystals. Nano Lett. 2008, 8, 2000–2005.

    Article  Google Scholar 

  20. Prasad, B. L. V.; Sorensen, C. M.; Klabunde, K. J. Gold nanoparticle superlattices. Chem. Soc. Rev. 2008, 37, 1871–1883.

    Article  Google Scholar 

  21. Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 1999, 32, 397–406.

    Article  Google Scholar 

  22. Bian, K.; Choi, J. J.; Kaushik, A.; Clancy, P.; Smilgies, D. M.; Hanrath, T. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs. ACS Nano 2011, 5, 2815–2823.

    Article  Google Scholar 

  23. Nagaoka, Y.; Chen, O.; Wang, Z. W.; Cao, Y. C. Structural control of nanocrystal superlattices using organic guest molecules. J. Am. Chem. Soc. 2012, 134, 2868–2871.

    Article  Google Scholar 

  24. Goubet, N.; Portalès, H.; Yan, C.; Arfaoui, I.; Albouy, P. A.; Mermet, A.; Pileni, M. P. Simultaneous growths of gold colloidal crystals. J. Am. Chem. Soc. 2012, 134, 3714–3719.

    Article  Google Scholar 

  25. Born, P.; Kraus, T. Ligand-dominated temperature dependence of agglomeration kinetics and morphology in alkyl-thiolcoated gold nanoparticles. Phys. Rev. E 2013, 87, 062313.

    Article  Google Scholar 

  26. Podsiadlo, P.; Krylova, G.; Demortière, A.; Shevchenko, E. V. Multicomponent periodic nanoparticle superlattices. J. Nanopart. Res. 2011, 13, 15–32.

    Article  Google Scholar 

  27. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

    Article  Google Scholar 

  28. Bodnarchuk, M. I.; Shevchenko, E. V.; Talapin, D. V. Structural defects in periodic and quasicrystalline binary nanocrystal superlattices. J. Am. Chem. Soc. 2011, 133, 20837–20849.

    Article  Google Scholar 

  29. Kang, Y. J.; Ye, X. C.; Chen, J.; Qi, L.; Diaz, R. E.; Doan-Nguyen, V.; Xing, G. Z.; Kagan, C. R.; Li, J.; Gorte, R. J., et al. Engineering catalytic contacts and thermal stability: Gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 2013, 135, 1499–1505.

    Article  Google Scholar 

  30. Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.

    Article  Google Scholar 

  31. Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 2011, 21, 2693–2704.

    Article  Google Scholar 

  32. Viti, C.; Frezzotti, M. L. Transmission electron microscopy applied to fluid inclusion investigations. Lithos 2001, 55, 125–138.

    Article  Google Scholar 

  33. Schmid, M.; Hebenstreit, W.; Varga, P.; Crampin, S. Quantum wells and electron interference phenomena in Al due to subsurface noble gas bubbles. Phys. Rev. Lett. 1996, 76, 2298–2301.

    Article  Google Scholar 

  34. Sotta, P. Equilibrium shape of lyotropic cubic monocrystals. J. Phys. II 1991, 1, 763–772.

    Google Scholar 

  35. Serizawa, H.; Matsunaga, J.; Haga, Y.; Nakajima, K.; Akabori, M.; Tsuru, T.; Kaji, Y.; Kashibe, S.; Ohisi, Y.; Yamanaka, S. Formation and growth of image crystals by helium precipitation. Cryst. Growth Des. 2013, 13, 2815–2823.

    Article  Google Scholar 

  36. Bain, E. C. The nature of martensite. Trans. Am. Inst. Min. Metall. Eng. 1924, 70, 25–46.

    Google Scholar 

  37. Roldan Cuenya, B.; Doi, M.; Löbus, S.; Courths, R.; Keune, W. Observation of the fcc-to-bcc bain transformation in epitaxial Fe ultrathin films on Cu3Au(001). Surf. Sci. 2001, 493, 338–360.

    Article  Google Scholar 

  38. Bang, J.; Lodge, T. P. Mechanisms and epitaxial relationships between close-packed and bcc lattices in block copolymer solutions. J. Phys. Chem. B 2003, 107, 12071–12081.

    Article  Google Scholar 

  39. Zheng, N. F.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.

    Article  Google Scholar 

  40. Gungor, S. Handbook of Moiré Measurement; Taylor & Francis, 2005.

    Google Scholar 

  41. Eah, S. K. A very large two-dimensional superlattice domain of monodisperse gold nanoparticles by self-assembly. J. Mater. Chem. 2011, 21, 16866–16868.

    Article  Google Scholar 

  42. Kishimoto, S.; Yamauchi, Y. The exploration of domain sizes and orientation directions in ordered assembled nanoparticles with electron Moiré fringes. Phys. Chem. Chem. Phys. 2009, 11, 5554–5557.

    Article  Google Scholar 

  43. Wan, Y. F.; Goubet, N.; Albouy, P. A.; Schaeffer N.; Pileni, M. P. Hierarchy in Au nanocrystal ordering in a supracrystal: II. Control of interparticle distances. Langmuir 2013, 29, 13576–13581.

    Article  Google Scholar 

  44. Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. Simultaneous interfacial and precipitated supracrystals of Au nanocrystals: Experiments and simulations. J. Phys. Chem. B 2013, 117, 4510–4516.

    Article  Google Scholar 

  45. Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 1999, 15, 3782–3789.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Paule Pileni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goubet, N., Pileni, MP. Negative supracrystals inducing a FCC-BCC transition in gold nanocrystal superlattices. Nano Res. 7, 171–179 (2014). https://doi.org/10.1007/s12274-013-0384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0384-9

Keywords

Navigation