Skip to main content
Log in

Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/electrode and shorten the transport paths for electrons and lithium ions. In this study, hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area of over 140 m2·g−1 and diameter more than 500 nm have been successfully synthesized by combining the versatile sol-gel process and a hydrothermal reaction, and exhibit excellent electrochemical performance with a high specific capacity of 120 mA·h·g−1 at 20 C and long cycling stability of < 2% decay after 100 cycles. Ex situ electron energy loss spectroscopy (EELS) analysis of Li4Ti5O12 microspheres at different charge-discharge stages indicates that only a fraction of the Ti4+ ions are reduced to Ti3+ and a phase transformation occurs whereby the spinel phase Li4Ti5O12 is converted into the rock-salt phase Li7Ti5O12. Even after 100 cycles, the oxidation-reduction reaction between Ti3+ and Ti4+ can be carried out much more effectively on the surface of Li4Ti5O12 nanosheets than on commercially available Li4Ti5O12 particles. All the results suggest that these Li4Ti5O12 microspheres may be attractive candidate anode materials for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, D. P.; Mulder, F. M.; Wagemaker, M. Templated spinel Li4Ti5O12 Li-ion battery electrodes combining high rates with high energy density. Electrochem. Commun. 2013, 35, 124–127.

    Article  Google Scholar 

  2. Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Facile synthesis of nanocrystalline Li4Ti5O12 by microemulsion and its application as anode material for Li-ion batteries. J. Power Sources 2012, 220, 84–88.

    Article  Google Scholar 

  3. Lee, B.; Yoon, J. R. Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor. Electron. Mater. Lett. 2013, 9, 871–873.

    Article  Google Scholar 

  4. Chiu, H. C.; Brodusch, N.; Gauvin, R.; Guerfi, A.; Zaghib, K.; Demopoulos, G. P. Aqueous synthesized nanostructured Li4Ti5O12 for high-performance lithium ion battery anodes. J. Electrochem. Soc. 2013, 160, A3041–A3047.

    Article  Google Scholar 

  5. Zhu, G. N.; Du, Y. J.; Wang, Y. G.; Yu, A. S.; Xia, Y. Y. Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. J. Electroanal. Chem. 2013, 688, 86–92.

    Article  Google Scholar 

  6. Liu, Z. M.; Zhang, N. Q.; Sun, K. N. A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (similar to 20 nm) for lithium ion batteries with superior high-rate performance. J. Mater. Chem. 2012, 22, 11688–11693.

    Article  Google Scholar 

  7. Vujkovic, M.; Stojkovic, I.; Mitric, M.; Mentus, S.; Cvjeticanin, N. Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: Morphology and electrochemical performance. Mater. Res. Bull. 2013, 48, 218–223.

    Article  Google Scholar 

  8. Zhang, B.; Yu, Y.; Liu, Y. S.; Huang, Z. D.; He, Y. B.; Kim, J. K. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. Nanoscale 2013, 5, 2100–2106.

    Article  Google Scholar 

  9. Han, S. W.; Ryu, J. H.; Jeong. J.; Yoon, D. H. Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications. J. Alloys Compd. 2013, 570, 144–149.

    Article  Google Scholar 

  10. Lai, C.; Wu, Z. Z.; Zhu, Y. X.; Wu, Q. D.; Li, L. Wang, C. Ball-milling assisted solid-state reaction synthesis of mesoporous Li4Ti5O12 for lithium-ion batteries anode. J. Power Sources 2013, 226, 71–74.

    Article  Google Scholar 

  11. Guo, X.; Xiang, H. F.; Zhou, T. P.; Li, W. H.; Wang, X. W.; Zhou, J. X.; Yu, Y. Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries. Electrochim. Acta 2013, 109, 33–38.

    Article  Google Scholar 

  12. Han, S. W.; Shin, J. W.; Yoon, D. H. Synthesis of pure nano-sized Li4Ti5O12 powder via solid-state reaction using very fine grinding media. Ceram. Int. 2012, 38, 6963–6968.

    Article  Google Scholar 

  13. Hao, Y. J.; Lai, Q. Y.; Xu, Z. H.; Liu, X. Q.; Ji, X. Y. Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Solid State Ionics 2005, 176, 1201–1206.

    Article  Google Scholar 

  14. Yan, G. F.; Fang, H. S.; Zhao, H. J.; Li, G. S.; Yang, Y.; Li, L. P. Ball milling-assisted sol-gel route to Li4Ti5O12 and its electrochemical properties. J. Alloys Compd. 2009, 470, 544–547.

    Article  Google Scholar 

  15. Long, W. M.; Wang, X. Y.; Yang, S. Y.; Shu, H. B.; Wu, Q.; Bai, Y. S.; Bai, L. Electrochemical properties of Li4Ti5−2x NixMnxO12 compounds synthesized by sol-gel process. Mater. Chem. Phys. 2011, 131, 431–435.

    Article  Google Scholar 

  16. Xiang, H. F.; Tian, B. B.; Lian, P. C.; Li, Z.; Wang, H. H. Sol-gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. J. Alloys Compd. 2011, 509, 7205–7209.

    Article  Google Scholar 

  17. Fang, W.; Cheng, X. Q.; Zuo, P. J.; Ma, Y. L.; Liao, L. X.; Yin, G. P. Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics 2013, 244, 52–56.

    Article  Google Scholar 

  18. Xiao, L. L.; Chen, G.; Sun, J. X.; Chen, D. H.; Xu, H. M.; Zheng, Y. Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A 2013, 1, 14618–14626.

    Article  Google Scholar 

  19. Zhang, Z. W.; Cao, L. Y.; Huang, J. F.; Wang, D. Q.; Wu, J. P.; Cai, Y. J. Hydrothermal synthesis of Li4Ti5O12 microsphere with high capacity as anode material for lithium ion batteries. Ceram. Int. 2013, 39, 2695–2698.

    Article  Google Scholar 

  20. Zhang, Z. W.; Cao, L. Y.; Huang, J. F.; Zhou, S.; Huang, Y. C.; Cai, Y. J. Hydrothermal synthesis of Zn-doped Li4Ti5O12 with improved high rate properties for lithium ion batteries. Ceram. Int. 2013, 39, 6139–6143.

    Article  Google Scholar 

  21. Tang, Y. F.; Yang, L.; Fang, S. H.; Qiu, Z. Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim. Acta 2009, 54, 6244–6249.

    Article  Google Scholar 

  22. Liu, Y. L.; Zhou, S. S.; Han, H. B.; Li, H.; Nie, J.; Zhou, Z. B.; Chen L. Q.; Huang, X. J. Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries. Electrochim. Acta 2013, 105, 524–529.

    Article  Google Scholar 

  23. Nithya, V. D.; Selvan, R. K.; Vediappan, K.; Sharmila, S.; Lee, C. W. Molten salt synthesis and characterization of Li4Ti5−x MnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries. Appl. Surf. Sci. 2012, 261, 515–519.

    Article  Google Scholar 

  24. Sharmila, S.; Senthilkumar, B.; Nithya, V. D.; Vediappan, K.; Lee, C. W.; Selvan, R. K. Electrical and electrochemical properties of molten salt-synthesized Li4Ti5−x SnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries. J. Phys. Chem. Solids 2013, 74, 1515–1521.

    Article  Google Scholar 

  25. Zhang, J. W.; Zhang, F. L.; Li, J. H.; Cai, W.; Zhang, J. W.; Yu, L. G.; Jin Z. S.; Zhang, Z. J. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance. J. Nanopart. Res. 2013, 15, 2005.

    Article  Google Scholar 

  26. Kim, K. M.; Kang, K. Y. Kim S.; Lee, Y. G. Electrochemical properties of TiO2 nanotube-Li4Ti5O12 composite anodes for lithium-ion batteries. Curr. Appl. Phys. 2012, 12, 1199–1206.

    Article  Google Scholar 

  27. Kim, J.; Cho, J. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem. Solid-State Lett. 2007, 10, A81–A84.

    Article  Google Scholar 

  28. Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

    Article  Google Scholar 

  29. Chen, J. Z.; Yang, L.; Fang, S. H.; Tang, Y. F. Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim. Acta 2010, 55, 6596–6600.

    Article  Google Scholar 

  30. Li, N.; Zhou, G. M.; Li, F.; Wen, L.; Cheng, H. M. A self-standing and flexible electrode of Li4Ti5O12 nanosheets with a N-doped carbon coating for high rate lithium ion batteries. Adv. Funct. Mater. 2013, 23, 5429–5435.

    Article  Google Scholar 

  31. Sha, Y. J.; Zhao, B. T.; Ran, R.; Cai, R.; Shao, Z. P. Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A 2013, 1, 13233–13243.

    Article  Google Scholar 

  32. Li, Y.; Pan, G. L.; Liu, J. W.; Gao, X. P. Preparation of Li4Ti5O12 nanorods as anode materials for lithium-ion batteries. J. Electrochem. Soc. 2009, 156, A495–A499.

    Article  Google Scholar 

  33. Wang, W.; Guo, Y. Y.; Liu, L. X.; Wang, S. X.; Yang, X. J.; Guo, H. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. J. Power Sources 2014, 245, 624–629.

    Article  Google Scholar 

  34. Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998–7004.

    Article  Google Scholar 

  35. Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K. P.; Jasinski, J. B.; Kaminska, M.; Lipinska, L.; Czerwinski, A. Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J. Power Sources 2014, 245, 764–771.

    Article  Google Scholar 

  36. Yin, Y. H.; Xu, J. J.; Cao, Z. X.; Yue H. Y.; Yang, S. T. Synthesis and electrochemical performance of Li4Ti5O12 hollow microspheres assembled by nanoparticles. Mater. Lett. 2013, 108, 21–24.

    Article  Google Scholar 

  37. Liu, J.; Tang, K.; Song, K. P.; Aken, P. A. V.; Yu, Y.; Maier, J. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 20813–20818.

    Article  Google Scholar 

  38. Marinaro, M.; Nobili, F.; Tossici, R.; Marassi, R. Microwave-assisted synthesis of carbon (Super-P) supported copper nanoparticles as conductive agent for Li4Ti5O12 anodes for Lithium-ion batteries. Electrochim. Acta 2013, 89, 555–560.

    Article  Google Scholar 

  39. Jung, H. G.; Myung, S. T.; Yoon, C. S.; Son, S. B.; Oh, K. H.; Amine, K.; Scrosati B.; Sun, Y. K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energ. Environ. Sci. 2011, 4, 1345–1351.

    Article  Google Scholar 

  40. Tang, Y. F.; Yang, L.; Qiu, Z. Huang, J. S. Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochem. Commun. 2008, 10, 1513–1516.

    Article  Google Scholar 

  41. Yu, L.; Wu, H. B.; Lou, X. W. Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv. Mater. 2013, 25, 2296–2300.

    Article  Google Scholar 

  42. Liu, J.; Li, X. F.; Yang, J. L.; Geng, D. S.; Li, Y. L.; Wang, D. N.; Li, R. Y.; Sun, X. L.; Cai, M.; Verbrugge, M. W. Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for liuthium ion batteries. Electrochim. Acta 2012, 63, 100–104.

    Article  Google Scholar 

  43. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Inter. 2013, 5, 2503–2509.

    Article  Google Scholar 

  44. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  45. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489–495.

    Article  Google Scholar 

  46. Choi, M.; Kim, C.; Jeon, S. Ok.; Yook, K. Soo.; Lee, J. Y.; Jang, J. Synthesis of titania embedded silica hollow nanospheres via sonicationmediated etching and re-deposition. Chem. Commun. 2011, 47, 7092–7094.

    Article  Google Scholar 

  47. Li, J. R.; Tang, Z. L.; Zhang, Z. T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochem. Commun. 2005, 7, 894–899.

    Article  Google Scholar 

  48. Lee, S. C.; Lee, S. M.; Lee, J. W.; Lee, J. B.; Lee, S. M.; Han, S. S.; Lee, H. C.; Kim, H. J. Spinel (LiTiO12)Ti4O5 nanotubed for energy storage materials. J. Phys. Chem. C 2009, 113, 18420–18423.

    Article  Google Scholar 

  49. Li, X.; Qu, M. Z.; Yu, Z. L. Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite. Solid State Ionics 2010, 181, 635–639.

    Article  Google Scholar 

  50. Shen, L. F.; Zhang, X. G.; Uchaker, E.; Yuan, C. Z.; Cao, G. Z. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698.

    Article  Google Scholar 

  51. Wang, W.; Tu, J. G.; Wang, S. B.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Nanostructured Li4Ti5O12 synthesized in a reverse micelle: A bridge between pseudocapacitor and lithium ion battery. Electrochim. Acta 2012, 68, 254–259.

    Article  Google Scholar 

  52. Jo, M. R.; Nam, K. M.; Lee, Y.; Song, K.; Park, J. T.; Kang, Y. M. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries. Chem. Commun. 2011, 47, 11474–11476.

    Article  Google Scholar 

  53. Wu, H. L.; Huang, Y. D.; Jia, D. Z.; Guo, Z. P.; Miao, M. Preparation and characterization of spinel Li4Ti5O12 nanoparticles anode materials for lithium ion battery. J. Nanopart. Res. 2012, 14, 713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Che, R., Liang, C. et al. Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. Nano Res. 7, 1043–1053 (2014). https://doi.org/10.1007/s12274-014-0467-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0467-2

Keywords

Navigation