Skip to main content
Log in

High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

    Article  Google Scholar 

  2. Fan, Z. Y.; Ho, J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; Chueh, Y. L.; Javey, A. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 2009, 21, 3730–3743.

    Article  Google Scholar 

  3. Reuss, R. H.; Chalamala, B. R.; Moussessian, A.; Kane, M. G.; Kumar, A.; Zhang, D. C.; Rogers, J. A.; Hatalis, M.; Temple, D.; Moddel, G.; et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE. 2005, 93, 1239–1256.

    Article  Google Scholar 

  4. Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S.; Werner, P.; Gosele, U.; Ballif, C. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano. Lett. 2006, 6, 622–625.

    Article  Google Scholar 

  5. Maiolo, J. R.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Atwater, H. A.; Lewis, N. S. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 2007, 129, 12346–12347.

    Article  Google Scholar 

  6. Wang, X.; Peng, K. Q.; Pan, X. J.; Chen, X.; Yang, Y.; Li, L.; Meng, X. M.; Zhang, W. J.; Lee, S. T. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem. Int. Ed. 2011, 50, 9861–9865.

    Article  Google Scholar 

  7. Santori, E. A.; Maiolo, J. R.; Bierman, M. J.; Strandwitz, N. C.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Photoanodic behavior of vapor-liquid-solid-grown, lightly doped, crystalline Si microwire arrays. Energ. Environ. Sci. 2012, 5, 6867–6871.

    Article  Google Scholar 

  8. Oh, I.; Kye, J.; Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 2012, 12, 298–302.

    Article  Google Scholar 

  9. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Article  Google Scholar 

  10. Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

    Article  Google Scholar 

  11. Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.

    Article  Google Scholar 

  12. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

    Article  Google Scholar 

  13. Heo, K.; Cho, E.; Yang, J. E.; Kim, M. H.; Lee, M.; Lee, B. Y.; Kwon, S. G.; Lee, M. S.; Jo, M. H.; Choi, H. J.; et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett. 2008, 8, 4523–4527.

    Article  Google Scholar 

  14. Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

    Article  Google Scholar 

  15. Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.

    Article  Google Scholar 

  16. Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 2008, 47, 5524–5542.

    Article  Google Scholar 

  17. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  Google Scholar 

  18. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

    Article  Google Scholar 

  19. Plass, K. E.; Filler, M. A.; Spurgeon, J. M.; Kayes, B. M.; Maldonado, S.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible polymer-embedded Si wire arrays. Adv. Mater. 2009, 21, 325–328.

    Article  Google Scholar 

  20. Weisse, J. M.; Kim, D. R.; Lee, C. H.; Zheng, X. L. Vertical transfer of uniform silicon nanowire arrays via crack formation. Nano Lett. 2011, 11, 1300–1305.

    Article  Google Scholar 

  21. Shiu, S. C.; Hung, S. C.; Chao, J. J.; Lin, C. F. Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics. Appl. Surf. Sci. 2009, 255, 8566–8570.

    Article  Google Scholar 

  22. Logeeswaran, V. J.; Katzenmeyer, A. M.; Islam, M. S. Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE Trans. Electron. Dev. 2010, 57, 1856–1864.

    Article  Google Scholar 

  23. Logeeswaran, V. J.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. Y.; Talin, A. A.; Dhar, N. K.; et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002–1032.

    Article  Google Scholar 

  24. Sperling, L. H. Introduction to Physical Polymer Science; Wiley: Hoboken, NJ, USA, 2006.

    Google Scholar 

  25. Johnson, G. C.; Jones, P. T.; Wu, C. Y.; Honda, T. Determining the strength of brittle thin films for MEMS. In Mechanical Properties of Structural Films; ASTM International: West Conshohocken, PA, USA, 2001.

    Google Scholar 

  26. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons, Inc., 2007.

    Google Scholar 

  27. Zeghbroeck, B. V. Principles of Semiconductor Devices; Arailable at ecee.colorado.edu/~bart/book/ (accessed December 10, 2013).

  28. Han, S. T.; Zhou, Y.; Roy, V. A. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

    Article  Google Scholar 

  29. Wu, W.; Wen, X.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging. Science 2013, 340, 952–957.

    Article  Google Scholar 

  30. He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

    Article  Google Scholar 

  31. Callister, W. D. Materials Science and Engineering; Wiley: Hoboken, NJ, USA, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saif Islam.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triplett, M., Nishimura, H., Ombaba, M. et al. High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Res. 7, 998–1006 (2014). https://doi.org/10.1007/s12274-014-0462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0462-7

Keywords

Navigation