Skip to main content
Log in

Lithographically directed assembly of one-dimensional DNA nanostructures via bivalent binding interactions

Nano Research Aims and scope Submit manuscript

Abstract

In order to exploit the outstanding physical properties of one-dimensional (1D) nanostructures such as carbon nanotubes and semiconducting nanowires and nanorods in future technological applications, it will be necessary to organize them on surfaces with precise control over both position and orientation. Here, we use a 1D rigid DNA motif as a model for studying directed assembly at the molecular scale to lithographically patterned nanodot anchors. By matching the inter-nanodot spacing to the length of the DNA nanostructure, we are able to achieve nearly 100% placement yield. By varying the length of single-stranded DNA linkers bound covalently to the nanodots, we are able to study the binding selectivity as a function of the strength of the binding interactions. We analyze the binding in terms of a thermodynamic model which provides insight into the bivalent nature of the binding, a scheme that has general applicability for the controlled assembly of a broad range of functional nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2755–2794.

    Article  CAS  Google Scholar 

  2. Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 2005, 38, 723–732.

    Article  CAS  Google Scholar 

  3. Kiessling, L. L.; Gestwicki, J. E.; Strong, L.E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. 2006, 45, 2348–2368.

    Article  CAS  Google Scholar 

  4. Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling materials with DNA as the guide. Science 2008, 321, 1795–1799.

    Article  CAS  Google Scholar 

  5. Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc. 2010, 132, 3248–3249.

    Article  CAS  Google Scholar 

  6. Hung, A. M.; Noh, H.; Cha, J. N. Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2010, 2, 2530–2537.

    Article  CAS  Google Scholar 

  7. Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotech. 2010, 5, 61–66.

    Article  CAS  Google Scholar 

  8. Rinker, S.; Ke, Y. G.; Liu, Y.; Chhabra, R.; Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotech. 2008, 3, 418–422.

    Article  CAS  Google Scholar 

  9. Zhang, J. P.; Liu, Y.; Ke, Y. G.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.

    Article  CAS  Google Scholar 

  10. Zheng, J.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 2006, 6, 1502–1504.

    Article  CAS  Google Scholar 

  11. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  CAS  Google Scholar 

  12. Seeman, N. C. DNA nanotechnology: Novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 225–248.

    Article  CAS  Google Scholar 

  13. Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotech. 2010, 5, 200–203.

    Article  CAS  Google Scholar 

  14. Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 2010, 132, 1592–1597.

    Article  CAS  Google Scholar 

  15. Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotech. 2010, 5, 121–126.

    Article  CAS  Google Scholar 

  16. Kershner, R. J.; Bozano, L. D.; Micheel, C. M.; Hung, A. M.; Fornof, A. R.; Cha, J. N.; Rettner, C. T.; Bersani, M.; Frommer, J.; Rothemund, P. W. K. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotech. 2009, 4, 557–561.

    Article  CAS  Google Scholar 

  17. Penzo, E.; Wang, R. S.; Palma, M.; Wind, S. J. Selective placement of DNA origami on substrates patterned by nanoimprint lithography. J. Vac. Sci. & Technol. B 2011, 29, 06F205.

    Article  Google Scholar 

  18. Gerdon, A. E.; Oh, S. S.; Hsieh, K.; Ke, Y.; Yan, H.; Soh, H. T. Controlled delivery of DNA origami on patterned surfaces. Small 2009, 5, 1942–1946.

    Article  CAS  Google Scholar 

  19. Yun, J. M.; Kim, K. N.; Kim, J. Y.; Shin, D. O.; Lee, W. J.; Lee, S. H.; Lieberman, M.; Kim, S. O. DNA origami nanopatterning on chemically modified graphene. Angew. Chem. 2012, 124, 936–939.

    Article  Google Scholar 

  20. Ding, B. Q.; Wu, H.; Xu, W.; Zhao, Z. A.; Liu, Y.; Yu, H. B.; Yan, H. Interconnecting gold islands with DNA origami nanotubes. Nano Lett. 2010, 10, 5065–5069.

    Article  CAS  Google Scholar 

  21. Pearson, A. C.; Pound, E.; Woolley, A. T.; Linford, M. R.; Harb, J. N.; Davis, R. C. Chemical alignment of DNA origami to block copolymer patterned arrays of 5 nm gold nanoparticles. Nano Lett. 2011, 11, 1981–1987.

    Article  CAS  Google Scholar 

  22. Fu, T. J.; Seeman, N. C. DNA double-crossover molecules. Biochemistry 1993, 32, 3211–3220.

    Article  CAS  Google Scholar 

  23. Sa-Ardyen, P.; Vologodskii, A. V.; Seeman, N. C. The flexibility of DNA double crossover molecules. Biophys. J. 2003, 84, 3829–3837.

    Article  CAS  Google Scholar 

  24. The relatively larger deviation is probably caused by the two sticky-ends cohesion (20 adenines) attached on both ends of the DFX molecule.

  25. Schvartzman, M.; Wind, S. J. Robust pattern transfer of nanoimprinted features for sub-5-nm fabrication. Nano Lett. 2009, 9, 3629–3634.

    Article  CAS  Google Scholar 

  26. Namatsu, H.; Takahashi, Y.; Yamazaki, K.; Yamaguchi, T.; Nagase, M.; Kurihara, K. Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations. J. Vac. Sci. & Technol. B 1998, 16, 69–76.

    Article  CAS  Google Scholar 

  27. Herne, T. M.; Tarlov, M. J. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920.

    Article  CAS  Google Scholar 

  28. Levicky, R.; Herne, T. M.; Tarlov, M. J.; Satija, S. K. Using self-assembly to control the structure of DNA monolayers on gold: A neutron reflectivity study. J. Am. Chem. Soc. 1998, 120, 9787–9792.

    Article  CAS  Google Scholar 

  29. Murphy, J. N.; Cheng, A. K.; Yu, H. Z.; Bizzotto, D. On the nature of DNA self-assembled monolayers on Au: Measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 2009, 131, 4042–4050.

    Article  CAS  Google Scholar 

  30. The density of the thymines in the SAM formed on the dots surface could also play a role, but has not been taken into account here also because of the heterogeneous surface packing density of DNA SAMs on Au; see for example Ref. [28].

  31. SantaLucia, J.; Hicks, D. The thermodynamics of DNA structural motifs. Annual Rev. Biophys. and Biomol. Struct. 2004, 33, 415–440.

    Article  CAS  Google Scholar 

  32. The entropy of hydration has been ignored in all cases; the entropic changes in hydration/dehydration that accompany the biological interactions occurring in the case under examination would simply increase each entropy value discussed by a constant.

  33. Gonzalez, M.; Bagatolli, L. A.; Echabe, I.; Arrondo, J. L. R.; Argarana, C. E.; Cantor, C. R.; Fidelio, G. D. Interaction of biotin with streptavidin thermostability and conformational changes upon binding. J. Biol. Chem. 1997, 272, 11288–11294.

    Article  CAS  Google Scholar 

  34. Seeman, N. C. de novo design of sequences for nucleic-acid structural-engineering. J. Biomol. Struct. Dyn. 1990, 8, 573–581.

    Article  CAS  Google Scholar 

  35. Samorí, P.; Francke, V.; Müllen, K.; Rabe, J. P. Self-assembly of a conjugated polymer: From molecular rods to a nanoribbon architecture with molecular dimensions. Chem. Eur. J. 1999, 5, 2312–2317.

    Article  Google Scholar 

  36. Single bridging was considered for AFM-measured heights less than 1.5 nm and for widths less than 25 nm (uncorrected for tip broadening, see Ref. [34]).

  37. Mack, E. T.; Snyder, P. W.; Perez-Castillejos, R.; Bilgicer, B.; Moustakas, D. T.; Butte, M. J.; Whitesides, G. M. Dependence of avidity on linker length for a bivalent ligand-bivalent receptor model system. J. Am. Chem. Soc. 2012, 134, 333–345.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matteo Palma or Shalom J. Wind.

Additional information

These two authors made an equal contribution to the work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Palma, M., Penzo, E. et al. Lithographically directed assembly of one-dimensional DNA nanostructures via bivalent binding interactions. Nano Res. 6, 409–417 (2013). https://doi.org/10.1007/s12274-013-0318-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0318-6

Keywords

Navigation