Skip to main content
Log in

Promising anti-diabetic potential of capillin and capillinol isolated from Artemisia capillaris

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Caffeoylquinic acids, flavonoids, and coumarins isolated from Artemisia capillaris have recently emerged as therapeutic candidates for diabetes and diabetic complications; however, there have been very few studies of the anti-diabetic potential of polyacetylenes. In the present study, we investigated the anti-diabetic potential of two polyacetylenes isolated from A. capillaris, namely capillin and capillinol by investigating their ability to inhibit α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), and rat lens aldose reductase (RLAR). Capillin displayed potent inhibitory activity against α-glucosidase, PTP1B, and RLAR, while capillinol showed moderate inhibitory activity against α-glucosidase and PTP1B at the concentrations tested. In addition, a kinetic study revealed that capillin inhibited α-glucosidase and RLAR in a noncompetitive manner, while inhibited PTP1B in a mixed-type manner. Capillinol inhibited α-glucosidase and PTP1B in a mixed-type manner. Docking simulations of these compounds demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B, indicating that these polyacetylenes have a high affinity and tight binding capacity for the active site of the enzyme. Furthermore, capillin dose-dependently inhibited peroxynitrite (ONOO)-mediated tyrosine nitration. The results clearly demonstrate the promising potential of capillin and capillinol as therapeutic interventions for the management of diabetes as well as diabetes-associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ (1997) Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein tyrosine phosphatase in adipose tissue. Metabolism 46:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated during inflammatory challenge. Proc Natl Acad Sci USA 98:12056–12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Burke TR Jr, Zhang ZY (1998) Protein–tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Biopolymers 47:225–241

    Article  CAS  PubMed  Google Scholar 

  • Bustanji Y, Al-Masri IM, Qasem A, Al-Bakri AG, Taha MO (2009) In silico screening for non-nucleoside HIV-1 reverse transcriptase inhibitors using physicochemical filters and high-throughput docking followed by in vitro evaluation. Chem Biol Drug Des 74:258–265

    Article  CAS  PubMed  Google Scholar 

  • Chang SL, Chang CL, Chiang YM, Hsieh RH, Tzeng CR, Wu TK, Sytwu HK, Shyur LF, Yang WC (2004) Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice. Planta Med 70:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Cheng AY, Fantus IG (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 172:213–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Dubé N, Gu F, Tremblay ML (2002) Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 269:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Christensen PL, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Na MK, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oha WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Cui CB, Jeong SK, Lee YS, Lee SO, Kang IJ, Lim SS (2009) Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductase and on the formation of advanced glycation end products. J Korean Soc Appl Biol Chem 52:655–662

    Article  CAS  Google Scholar 

  • Fusetani N, Li H, Tamura K, Matsunaga S (1993) Antifungal brominated C18 acetylenic acids from the marine sponge Petrosia volcano Hoshino. Tetrahedron 49:1203–1210

    Article  CAS  Google Scholar 

  • Goodarzi MT, Zal F, Malakooti M, Safari MR, Sadeghian S (2006) Inhibition of lens aldose reductase by flavonoids. Acta Med Iran 44:41–45

    Google Scholar 

  • Hallock FY, Cardellina HJ, Balaschak SM, Alexander RM, Prather RT, Shoemaker HR, Boyd MR (1995) Antitumor activity and stereochemistry of acetylenic alcohols from the sponge Cribrochalina vasculum. J Nat Prod 58:1801–1807

    Article  CAS  PubMed  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    CAS  PubMed  Google Scholar 

  • Hudson BI, Hofmann MA, Bucciarelli L, Wendt T, Moser B, Lu Y, Qu W, Stern DM, D’Agati V, Yan SD, Yan SF, Grant PJ, Schmidt AM (2002) Glycation and diabetes: the RAGE connection. Curr Sci 83:1515–1520

    CAS  Google Scholar 

  • Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH (2012) Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 29:580–606

    Article  CAS  PubMed  Google Scholar 

  • International Diabetes Federation (2013) IDF diabetes Atlas, 6th ed. International Diabetes Federation, Brussels. http://www.idf.org/diabetesatlas

  • Islam MN, Jung HA, Sohn HS, Kim HM, Choi JS (2013) Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch Pharm Res 36:542–552

    Article  Google Scholar 

  • Islam MN, Ishita IJ, Jung HA, Choi JS (2014) Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69:55–62

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Park JJ, Islam MN, Jin SE, Min BS, Lee JH, Sohn HS, Choi JS (2012) Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch Pharm Res 35:1021–1035

    Article  CAS  PubMed  Google Scholar 

  • Lee JR, Kim JK, Lee SJ, Kim KP (2009) Role of protein tyrosine nitration in neurodegenerative disease and atherosclerosis. Arch Pharm Res 32:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Cho HJ, Kang HY, Rhee MH, Park HJ (2012) Total saponin from Korean Red ginseng inhibits thromboxane A2 production associated microsomal enzyme activity in platelets. J Ginseng Res 36:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Zhang XD, Song YW, Liu JW (2005) A microplate-based screening method for α-glucosidase inhibitors. Chin J Clin Pharmacol Ther 10:1128–1134

    Google Scholar 

  • Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515–553

    Article  CAS  PubMed  Google Scholar 

  • Logendra S, Ribnicky DM, Yang H, Poulev A, Ma J, Kennelly EJ, Raskin I (2006) Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry 67:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Wang R, Wang X, Ma Z, Ning Li N (2012) Compounds from Angelica keiskei with NQO1 induction, DPPH scavenging and α-glucosidase inhibitory activities. Food Chem 131:992–998

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, Okuyama T (1995) Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull 43:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Shah MR, Ishtiaq Hizbullah SM, Habtemariam S, Zarrelli A, Muhammad A, Collina S, Khan I (2015) Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana. J Enzyme Inhib Med Chem 29:1–5

    Article  Google Scholar 

  • Shim H, Moon JS, Lee S, Yim D, Kang TJ (2012) Polyacetylene Compound from Cirsium japonicum var. ussuriense inhibited caspase-1-mediated IL-1β expression. Immune Netw 12:213–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225–243

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto N, Tada A, Yamazaki T, Tanamoto K (2007) Antimicrobial activity and constituents in Rumput roman extract as a natural food preservative. Shokuhin Eiseigaku Zasshi 48:106–111

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Eisenbrand G (1992) Chinese drugs of plant origin, chemistry, pharmacology and use in traditional and modern medicine. Springer, New York, p 179

    Book  Google Scholar 

  • Tomlinson DR, Stevens EJ, Diemel LT (1994) Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci 15:293–297

    Article  CAS  PubMed  Google Scholar 

  • Toshihiro I, Masashi M, Masayasu T (2009) Insecticidal activity of capillin isolated from the herbal medicine Inchinko against the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae). Appl Entomol Zool 44:497–500

    Article  Google Scholar 

  • Toshitsugu F, Hiroshi A, Noritaka H, Toshiaki K (1975) Synthesis and bioactivity of novel acetylenic compounds. Agr Biol Chem 39:519–527

    Article  Google Scholar 

  • Ubillas RP, Mendez CD, Jolad SD, Luo J, King SR, Carlson TJ, Fort DM (2000) Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta Med 66:82–83

    Article  CAS  PubMed  Google Scholar 

  • Whelan LC, Ryan MF (2004) Effects of the polyacetylene capillin on human tumour cell lines. Anticancer Res 24:2281–2286

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and by the Ministry of Education (2012R1A6A1028677) and was also partially assisted by the Korean Bioinformation Center (KOBIC) Research Support Program.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Additional information

Md. Nurul Islam and Ran Joo Choi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.N., Choi, R.J., Jung, H.A. et al. Promising anti-diabetic potential of capillin and capillinol isolated from Artemisia capillaris . Arch. Pharm. Res. 39, 340–349 (2016). https://doi.org/10.1007/s12272-016-0715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0715-y

Keywords

Navigation