Skip to main content
Log in

Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Nitric oxide generates reactive nitrosative species, such as peroxynitrite (ONOO) that may be involved in a number of diseases. ONOO can mediate protein tyrosine nitration which causes structural changes of affected proteins and leads to their inactivation. Various proteomics and immunological methods including mass spectrometry combined with both liquid and 2-D PAGE, and immunodetection have been employed to identify and characterize nitrated proteins from pathological samples. This review presents the pahtobiological roles of the pathogenic posttranslational modification in neurodegenerative diseases and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asatryan, L., Hamilton, R. T., Isas, J. M., Hwang, J., Kayed, R., and Sevanian, A., LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. J. Lipid Res., 46, 115–122 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C. S., Perry, G., Zeng, H., Kato, Y., Jones, W. D., Ling, K. Q., Huang, X., Moir, R. D., Wang, D., Sayre, L. M., Smith, M. A., Chen, S. G., and Bush, A. I., Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry, 43, 560–568 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., and Iwatsubo, T., Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol., 152, 879–884 (1998).

    PubMed  CAS  Google Scholar 

  • Barter, P. J., Nicholls, S., Rye, K. A., Anantharamaiah, G. M., Navab, M., and Fogelman, A. M., Antiinflammatory properties of HDL. Circ. Res., 95, 764–772 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Blanchard-Fillion, B., Souza, J. M., Friel, T., Jiang, G. C., Vrana, K., Sharov, V., Barron, L., Schoneich, C., Quijano, C., Alvarez, B., Radi, R., Przedborski, S., Fernando, G. S., Horwitz, J., and Ischiropoulos, H., Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J. Biol. Chem., 276, 46017–46023 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Boullier, A., Bird, D. A., Chang, M. K., Dennis, E. A., Friedman, P., Gillotre-Taylor, K., Horkko, S., Palinski, W., Quehenberger, O., Shaw, P., Steinberg, D., Terpstra, V., and Witztum, J. L., Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N. Y. Acad. Sci., 947, 214–222; discussion 222–223 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Castegna, A., Thongboonkerd, V., Klein, J. B., Lynn, B., Markesbery, W. R., and Butterfield, D. A., Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem., 85, 1394–1401 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cellini, B., Bertoldi, M., Montioli, R., and Borri Voltattorni, C., Probing the role of Tyr 64 of Treponema denticola cystalysin by site-directed mutagenesis and kinetic studies. Biochemistry, 44, 13970–13980 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Cenini, G., Sultana, R., Memo, M., and Butterfield, D. A., Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radic. Biol. Med., 45, 81–85 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. L., Chen, J., Rawale, S., Varadharaj, S., Kaumaya, P. P., Zweier, J. L., and Chen, Y. R., Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the postischemic myocardium. J. Biol. Chem., 283, 27991–28003 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. Y., Zhang, J., and Bing, G., Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol. Aging, (2008).

  • Colell, A., Garcia-Ruiz, C., Lluis, J. M., Coll, O., Mari, M., and Fernandez-Checa, J. C., Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem., 278, 33928–33935 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Crow, J. P., Ye, Y. Z., Strong, M., Kirk, M., Barnes, S., and Beckman, J. S., Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem., 69, 1945–1953 (1997).

    PubMed  CAS  Google Scholar 

  • Cuchel, M. and Rader, D. J., Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation, 113, 2548–2555 (2006).

    Article  PubMed  Google Scholar 

  • Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M., Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem., 273, 9443–9449 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Davis, B. and Zou, M. H., CD40 ligand-dependent tyrosine nitration of prostacyclin synthase in vivo. Circulation, 112, 2184–292 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Donnini, S., Monti, M., Roncone, R., Morbidelli, L., Rocchigiani, M., Oliviero, S., Casella, L., Giachetti, A., Schulz, R., and Ziche, M., Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett., 582, 1135–1140 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Fahn, S., Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci., 991, 1–14 (2003).

    PubMed  CAS  Google Scholar 

  • Ferraro, B., Galli, F., Frei, B., Kingdon, E., Canestrari, F., Rice-Evans, C., Buoncristiani, U., Davenport, A., and Moore, K. P., Peroxynitrite-induced oxidation of plasma lipids is enhanced in stable hemodialysis patients. Kidney Int., 63, 2207–2213 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Frears, E. R., Zhang, Z., Blake, D. R., O’connell, J. P., and Winyard, P. G., Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett., 381, 21–24 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Gamblin, T. C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A. L., Lu, M., Fu, Y., Garcia-Sierra, F., Lapointe, N., Miller, R., Berry, R. W., Binder, L. I., and Cryns, V. L. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A., 100, 10032–10037 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q., and Lee, V. M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science (New York), N.Y., 290, 985–989 (2000).

    CAS  Google Scholar 

  • Greenacre, S. A. and Ischiropoulos, H., Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res., 34, 541–581 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Griendling, K. K. and Fitzgerald, G. A., Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation, 108, 2034–2040 (2003).

    Article  PubMed  Google Scholar 

  • Hamilton, R. T., Asatryan, L., Nilsen, J. T., Isas, J. M., Gallaher, T. K., Sawamura, T., and Hsiai, T. K., LDL protein nitration: implication for LDL protein unfolding. Arch. Biochem. Biophys., 479, 1–14 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hensley, K., Maidt, M. L., Yu, Z., Sang, H., Markesbery, W. R., and Floyd, R. A., Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci., 18, 8126–8132 (1998).

    PubMed  CAS  Google Scholar 

  • Hodara, R., Norris, E. H., Giasson, B. I., Mishizen-Eberz, A. J., Lynch, D. R., Lee, V. M., and Ischiropoulos, H., Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J. Biol. Chem., 279, 47746–47753 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., and Ho, C. M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J., 17, 1648–1657 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hsiai, T. K., Hwang, J., Barr, M. L., Correa, A., Hamilton, R., Alavi, M., Rouhanizadeh, M., Cadenas, E., and Hazen, S. L., Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radic. Biol. Med., 42, 519–529 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun., 305, 776–783 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Knyushko, T. V., Sharov, V. S., Williams, T. D., Schoneich, C., and Bigelow, D. J., 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry, 44, 13071–13081 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kozlov, A. V., Staniek, K., and Nohl, H., Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett., 454, 127–130 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., and Riess, O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet., 18, 106–108 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Leeuwenburgh, C., Hardy, M. M., Hazen, S. L., Wagner, P., Oh-Ishi, S., Steinbrecher, U. P., and Heinecke, J. W., Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem., 272, 1433–1436 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lokuta, A. J., Maertz, N. A., Meethal, S. V., Potter, K. T., Kamp, T. J., Valdivia, H. H., and Haworth, R. A., Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation, 111, 988–995 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lutgens, E. and Daemen, M. J., CD40-CD40L interactions in atherosclerosis. Trends Cardiovasc. Med., 12, 27–32 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Mach, F., Schonbeck, U., Sukhova, G. K., Atkinson, E., and Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature, 394, 200–203 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Macmillan-Crow, L. A., Crow, J. P., and Thompson, J. A., Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 37, 1613–1622 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Malek, G., Li, C. M., Guidry, C., Medeiros, N. E., and Curcio, C. A., Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am. J. Pathol., 162, 413–425 (2003).

    PubMed  CAS  Google Scholar 

  • Martinez-Senac, M. M. and Webb, M. R., Mechanism of translocation and kinetics of DNA unwinding by the helicase RecG. Biochemistry, 44, 16967–16976 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Munzel, T., Daiber, A., Ullrich, V., and Mulsch, A., Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler. Thromb., 25, 1551–1557 (2005).

    Article  CAS  Google Scholar 

  • Navab, M., Hama, S. Y., Cooke, C. J., Anantharamaiah, G. M., Chaddha, M., Jin, L., Subbanagounder, G., Faull, K. F., Reddy, S. T., Miller, N. E., and Fogelman, A. M., Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res., 41, 1481–1494 (2000).

    PubMed  CAS  Google Scholar 

  • Nicholls, S. J., Dusting, G. J., Cutri, B., Bao, S., Drummond, G. R., Rye, K. A., and Barter, P. J., Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation, 111, 1543–1550 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Nonnis, S., Cappelletti, G., Taverna, F., Ronchi, C., Ronchi, S., Negri, A., Grassi, E., and Tedeschi, G., Tau is endogenously nitrated in mouse brain: identification of a tyrosine residue modified in vivo by NO. Neurochem. Res., 33, 518–525 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Parastatidis, I., Thomson, L., Fries, D. M., Moore, R. E., Tohyama, J., Fu, X., Hazen, S. L., Heijnen, H. F., Dennehy, M. K., Liebler, D. C., Rader, D. J., and Ischiropoulos, H., Increased protein nitration burden in the atherosclerotic lesions and plasma of apolipoprotein A-I deficient mice. Circ. Res., 101, 368–376 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Phinney, A. L., Andringa, G., Bol, J. G., Wolters, E., Van Muiswinkel, F. L., Van Dam, A. M., and Drukarch, B., Enhanced sensitivity of dopaminergic neurons to rotenone-induced toxicity with aging. Parkinsonism Relat. Disord., 12, 228–238 (2006).

    Article  PubMed  Google Scholar 

  • Phipps, R. P. Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system. Proc. Natl. Acad. Sci. U.S.A., 97, 6930–6932 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L., Mutation in the alphasynuclein gene identified in families with Parkinson’s disease. Science (New York), N.Y., 276, 2045–2047 (1997).

    CAS  Google Scholar 

  • Reyes, J. F., Reynolds, M. R., Horowitz, P. M., Fu, Y., Guillozet-Bongaarts, A. L., Berry, R., and Binder, L. I., A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol. Dis., 31, 198–208 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, M. R., Berry, R. W., and Binder, L. I. Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry, 44, 1690–1700 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, M. R., Reyes, J. F., Fu, Y., Bigio, E. H., Guillozet-Bongaarts, A. L., Berry, R. W., and Binder, L. I., Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer’s disease and other tauopathies. J. Neurosci., 26, 10636–10645 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ryeom, S. W., Silverstein, R. L., Scotto, A., and Sparrow, J. R., Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J. Biol. Chem., 271, 20536–20539 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Saad, A. F., Virella, G., Chassereau, C., Boackle, R. J., and Lopes-Virella, M. F., OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J. Lipid Res., 47, 1975–1983 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Sabetkar, M., Low, S. Y., Bradley, N. J., Jacobs, M., Naseem, K. M., and Richard Bruckdorfer, K., The nitration of platelet vasodilator stimulated phosphoprotein following exposure to low concentrations of hydrogen peroxide. Platelets, 19, 282–292 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Sawada, H., Ishiguro, H., Nishii, K., Yamada, K., Tsuchida, K., Takahashi, H., Goto, J., Kanazawa, I., and Nagatsu, T., Characterization of neuron-specific huntingtin aggregates in human huntingtin knock-in mice. Neurosci. Res., 57, 559–573 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Schonbeck, U., Sukhova, G. K., Shimizu, K., Mach, F., and Libby, P., Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. U.S.A., 97, 7458–7563 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. P., Tew, D. J., Hill, A. F., Bottomley, S. P., Masters, C. L., Barnham, K. J., and Cappai, R., Formation of a high affinity lipid-binding intermediate during the early aggregation phase of alpha-synuclein. Biochemistry, 47, 1425–1434 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M., and Ischiropoulos, H., Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem., 275, 18344–18349 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M., alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. U.S.A., 95, 6469–6473 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M., Alpha-synuclein in Lewy bodies. Nature, 388, 839–840 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E. R. and Berlett, B. S., Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev., 30, 225–243 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Sugama, S., Yang, L., Cho, B. P., Degiorgio, L. A., Lorenzl, S., Albers, D. S., Beal, M. F., Volpe, B. T., and Joh, T. H. Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res., 964, 288–294 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., Yamashita, H., Nakamura, T., Nagano, Y., and Nakamura, S., Tyrosine 125 of alpha-synuclein plays a critical role for dimerization following nitrative stress. Brain Res., 938, 73–80 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Torzewski, M. and Lackner, K. J., Initiation and progression of atherosclerosis—enzymatic or oxidative modification of low-density lipoprotein? Clin. Chem. Lab. Med., 44, 1389–1394 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Trostchansky, A. and Rubbo, H., Lipid nitration and formation of lipid-protein adducts: biological insights. Amino Acids, 32, 517–522 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Urbich, C., Dernbach, E., Aicher, A., Zeiher, A. M., and Dimmeler, S., CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 106, 981–986 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Urbich, C., Mallat, Z., Tedgui, A., Clauss, M., Zeiher, A. M., and Dimmeler, S., Upregulation of TRAF-3 by shear stress blocks CD40-mediated endothelial activation. J. Clin. Invest., 108, 1451–1458 (2001).

    PubMed  CAS  Google Scholar 

  • Ursini, F., Davies, K. J., Maiorino, M., Parasassi, T., and Sevanian, A., Atherosclerosis: another protein misfolding disease? Trends Mol. Med., 8, 370–374 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Matsuno, S., Kagota, S., Haginaka, J., and Kunitomo, M., Peroxynitrite-mediated oxidative modification of low-density lipoprotein by aqueous extracts of cigarette smoke and the preventive effect of fluvastatin. Atherosclerosis, 172, 259–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yeo, W. S., Lee, S. J., Lee, J. R., and Kim, K. P., Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep., 41, 194–203 (2008).

    PubMed  CAS  Google Scholar 

  • Zhao, X., Chen, Y. R., He, G., Zhang, A., Druhan, L. J., Strauch, A. R., and Zweier, J. L., Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am. J. Physiol., 292, H1541–H1550 (2007).

    Article  CAS  Google Scholar 

  • Zhao, X., He, G., Chen, Y. R., Pandian, R. P., Kuppusamy, P., and Zweier, J. L., Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation, 111, 2966–2272 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Zheng, L., Nukuna, B., Brennan, M. L., Sun, M., Goormastic, M., Settle, M., Schmitt, D., Fu, X., Thomson, L., Fox, P. L., Ischiropoulos, H., Smith, J. D., Kinter, M., and Hazen, S. L., Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest., 114, 529–541 (2004).

    PubMed  CAS  Google Scholar 

  • Zou, M. H., Cohen, R., and Ullrich, V., Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium, 11, 89–97 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Zweier, J. L., Wang, P., Samouilov, A., and Kuppusamy, P,. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med., 1, 804–809 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Pyo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.R., Kim, J.K., Lee, S.J. et al. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch. Pharm. Res. 32, 1109–1118 (2009). https://doi.org/10.1007/s12272-009-1802-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1802-0

Key words

Navigation