Skip to main content
Log in

Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Intercellular communication mediated by exosomes, nano-sized extracellular vesicles, is crucial for preserving vascular integrity and in the development of cardiovascular and other diseases. As natural carriers of signal molecules, exosomes released from sources such as blood cells, endothelial cells, immune cells, smooth muscle cells, etc., can modify a multitude of cellular bioactivities. They do so by shuttling lipids, proteins, and nucleic acids between donor and recipient cells while circulating in body fluids and in the extracellular space. A recent surge of interest in the field of exosomal biology is in part due to the recognition that the molecules they carry can act as facilitators of both pathogenesis but can also initiate protective and rescue signaling. This mini-review describes current knowledge on exosome function in health and disease including cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cervio, E., Barile, L., Moccetti, T., & Vassalli, G. (2015). Exosomes for intramyocardial intercellular communication. Stem Cells International, 2015, 482171.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., et al. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 126(24), 5553–65.

    Article  CAS  PubMed  Google Scholar 

  3. Colombo, M., Raposo, G., & Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–89.

    Article  CAS  PubMed  Google Scholar 

  4. Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta, 1820(7), 940–8.

    Article  CAS  PubMed  Google Scholar 

  5. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–9.

    Article  CAS  PubMed  Google Scholar 

  6. Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stoorvogel, W. (2015). Resolving sorting mechanisms into exosomes. Cell Research, 25(5), 531–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.

    Article  Google Scholar 

  9. O’Loughlin, A. J., Woffindale, C. A., & Wood, M. J. (2012). Exosomes and the emerging field of exosome-based gene therapy. Current Gene Therapy, 12(4), 262–74.

    Article  PubMed  Google Scholar 

  10. Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., et al. (2015). ExoCarta: a web-based compendium of exosomal cargo. Journal of Molecular Biology.

  11. Mulcahy, L.A., Pink, R.C., & Carter, D.R. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 3:10.3402/jev.v3.24641. eCollection 2014.

  12. Tian, T., Zhu, Y. L., Hu, F. H., Wang, Y. Y., Huang, N. P., & Xiao, Z. D. (2013). Dynamics of exosome internalization and trafficking. Journal of Cellular Physiology, 228(7), 1487–95.

    Article  CAS  PubMed  Google Scholar 

  13. Bang, C., Batkai, S., Dangwal, S., Gupta, S. K., Foinquinos, A., Holzmann, A., et al. (2014). Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. Journal of Clinical Investigation, 124(5), 2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 9(2), e88685.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gray, W. D., French, K. M., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Platt, M. O., et al. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116(2), 255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ong, S. G., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., et al. (2014). Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation, 130(11 Suppl 1), S60–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Momen-Heravi, F., Balaj, L., Alian, S., Mantel, P. Y., Halleck, A. E., Trachtenberg, A. J., et al. (2013). Current methods for the isolation of extracellular vesicles. Biological Chemistry, 394(10), 1253–62.

    Article  CAS  PubMed  Google Scholar 

  18. Lozano-Ramos, I., Bancu, I., Oliveira-Tercero, A., Armengol, M. P., Menezes-Neto, A., Del Portillo, H. A., et al. (2015). Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. Journal of Extracellular Vesicles, 4, 27369.

    Article  PubMed  Google Scholar 

  19. Greening, D. W., Xu, R., Ji, H., Tauro, B. J., & Simpson, R. J. (2015). A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods in Molecular Biology, 1295, 179–209.

    Article  CAS  PubMed  Google Scholar 

  20. Overbye, A., Skotland, T., Koehler, C. J., Thiede, B., Seierstad, T., Berge, V., et al. (2015). Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 6(30), 30357–76.

    PubMed  PubMed Central  Google Scholar 

  21. Tang, M. K., & Wong, A. S. (2015). Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Letters, 367(1), 26–33.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura, T., Sugimachi, K., Iinuma, H., Takahashi, Y., Kurashige, J., Sawada, G., et al. (2015). Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. British Journal of Cancer, 113(2), 275–81.

    Article  CAS  PubMed  Google Scholar 

  23. Ogata-Kawata, H., Izumiya, M., Kurioka, D., Honma, Y., Yamada, Y., Furuta, K., et al. (2014). Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 9(4), e92921.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., et al. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. Journal of Biological Chemistry, 287(6), 3842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sluijter, J. P., & van Rooij, E. (2015). Exosomal microRNA clusters are important for the therapeutic effect of cardiac progenitor cells. Circulation Research, 116(2), 219–21.

    Article  CAS  PubMed  Google Scholar 

  26. Khalyfa, A., & Gozal, D. (2014). Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. Journal of Translational Medicine, 12(162), 5876-12-162.

  27. Matsumoto, S., Sakata, Y., Suna, S., Nakatani, D., Usami, M., Hara, M., et al. (2013). Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circulation Research, 113(3), 322–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, R., Li, N., Zhang, Y., Ran, Y., & Pu, J. (2011). Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Internal Medicine, 50(17), 1789–95.

    Article  CAS  PubMed  Google Scholar 

  29. Recchioni, R., Marcheselli, F., Olivieri, F., Ricci, S., Procopio, A. D., & Antonicelli, R. (2013). Conventional and novel diagnostic biomarkers of acute myocardial infarction: a promising role for circulating microRNAs. Biomarkers, 18(7), 547–58.

    Article  CAS  PubMed  Google Scholar 

  30. Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L. M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 103(4), 530–41.

    Article  CAS  PubMed  Google Scholar 

  31. Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romagnoli, G. G., Zelante, B. B., Toniolo, P. A., Migliori, I. K., & Barbuto, J. A. (2015). Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Frontiers in Immunology, 5, 692.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ailawadi, S., Wang, X., Gu, H., & Fan, G. C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852(1), 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., et al. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–90.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–5.

    Article  CAS  PubMed  Google Scholar 

  36. Clayton, A. (2012). Cancer cells use exosomes as tools to manipulate immunity and the microenvironment. Oncoimmunology, 1(1), 78–80.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Epple, L. M., Griffiths, S. G., Dechkovskaia, A. M., Dusto, N. L., White, J., Ouellette, R. J., et al. (2012). Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One, 7(7), e42064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taylor, D. D., & Gercel-Taylor, C. (2011). Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Seminars in Immunopathology, 33(5), 441–54.

    Article  CAS  PubMed  Google Scholar 

  39. Marleau, A.M., Chen, C.S., Joyce, J.A., & Tullis, R.H. (2012) Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine. 10(134), 5876-10-134.

  40. Chahar, H. S., Bao, X., & Casola, A. (2015). Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses, 7(6), 3204–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montecalvo, A., Larregina, A. T., Shufesky, W. J., Stolz, D. B., Sullivan, M. L., Karlsson, J. M., et al. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119(3), 756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mittelbrunn, M., & Sanchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biology, 13(5), 328–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ibrahim, A., & Marban, E. (2015). Exosomes: fundamental biology and roles in cardiovascular physiology. Annual Review of Physical Chemistry.

  44. Pfeifer, P., Werner, N., & Jansen, F. (2015). Role and function of microRNAs in extracellular vesicles in cardiovascular biology. BioMed Research International, 2015, 161393.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–44.

    Article  CAS  PubMed  Google Scholar 

  46. Emanueli, C., Shearn, A. I., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.

    Article  CAS  PubMed  Google Scholar 

  47. Diehl, P., Fricke, A., Sander, L., Stamm, J., Bassler, N., Htun, N., et al. (2012). Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular Research, 93(4), 633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72(14), 2697–708.

    Article  CAS  PubMed  Google Scholar 

  49. Rautou, P. E., Leroyer, A. S., Ramkhelawon, B., Devue, C., Duflaut, D., Vion, A. C., et al. (2011). Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circulation Research, 108(3), 335–43.

    Article  CAS  PubMed  Google Scholar 

  50. Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al. (2013). Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation, 128(18), 2026–38.

    Article  CAS  PubMed  Google Scholar 

  51. Fish, J. E., & Cybulsky, M. I. (2015). ApoE attenuates atherosclerosis via miR-146a. Circulation Research, 117(1), 3–6.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y., Qin, W., Zhang, L., Wu, X., Du, N., Hu, Y., et al. (2015). MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Scientific Reports, 5, 9401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caporali, A., Meloni, M., Nailor, A., Mitic, T., Shantikumar, S., Riu, F., et al. (2015). p75(NTR)-dependent activation of NF-kappaB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nature Communications, 6, 8024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–33.

    Article  CAS  PubMed  Google Scholar 

  55. Son, D. J., Kumar, S., Takabe, W., Kim, C. W., Ni, C. W., Alberts-Grill, N., et al. (2013). The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nature Communications, 4, 3000.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Essandoh, K., Yang, L., Wang, X., Huang, W., Qin, D., Hao, J., et al. (2015). Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochimica et Biophysica Acta, 1852(11), 2362–71.

    Article  CAS  PubMed  Google Scholar 

  57. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.

    Article  CAS  PubMed  Google Scholar 

  58. Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–22.

    Article  CAS  PubMed  Google Scholar 

  59. Eulalio, A., Mano, M., Dal Ferro, M., Zentilin, L., Sinagra, G., Zacchigna, S., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature, 492(7429), 376–81.

    Article  CAS  PubMed  Google Scholar 

  60. Das, S., & Halushka, M. K. (2015). Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 24(4), 199–206.

    Article  CAS  PubMed  Google Scholar 

  61. Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clinical Applications, 9(3–4), 358–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kishore.

Ethics declarations

Funding Source

Work described in this manuscript was in part supported by the National Institute of Health grants HL091983, HL126186, HL053354, and HL108795 to RK and by the American Heart Association Postdoctoral Grant 15POST22720022 to VNSG.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, R., Garikipati, V.N.S. & Gumpert, A. Tiny Shuttles for Information Transfer: Exosomes in Cardiac Health and Disease. J. of Cardiovasc. Trans. Res. 9, 169–175 (2016). https://doi.org/10.1007/s12265-016-9682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9682-4

Keywords

Navigation