Skip to main content

Advertisement

Log in

Clinical and Preclinical Use of LOX-1-Specific Antibodies in Diagnostics and Therapeutics

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Lectin-like oxidized low-density lipoprotein receptor-1 (SR-E1, LOX-1, OLR1) was first discovered as a vascular receptor for modified lipoprotein particles nearly 20 years ago. Since then, in vitro and in vivo studies have demonstrated an association between LOX-1, a soluble form (sLOX-1) and a number of diseases including atherosclerosis, arthritis, hypertension and pre-eclampsia. However, converting such discoveries into tools and drugs for routine clinical use is dependent on translational preclinical and clinical studies but such studies have only begun to emerge in the past decade. In this review, we identify the key clinical applications and corresponding criteria that need to be addressed for the effective use of LOX-1-related probes and molecules for patient benefit in different disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

(ox)LDL:

(Oxidized) low-density lipoprotein

LOX-1, OLR1:

Lectin-like oxidized low-density lipoprotein receptor-1

TNF-α:

Tumour necrosis factor-alpha

TGFβ:

Transforming growth factor beta

ACS:

Acute coronary syndrome

ApoE:

Apolipoprotein E

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

MCP1:

Monocyte chemotactic protein 1

HIE:

Hypoxic ischemic encephalopathy

References

  1. Chiba, Y., Ogita, T., Ando, K., & Fujita, T. (2001). PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochemical and Biophysical Research Communications, 286(3), 541–546.

    Article  CAS  PubMed  Google Scholar 

  2. Simopolou, T., Malizos, K. N., & Tsezou, A. (2007). Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes. Clinical and Experimental Rheumatology, 25(4), 605–612.

    Google Scholar 

  3. Yoshida, H., Kondratenko, N., Green, S., Steinberg, D., & Quehenberger, O. (1998). Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochemical Journal, 334, 9–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., et al. (1997). An endothelial receptor for oxidized low-density lipoprotein. Nature, 386(6620), 73–77.

    Article  CAS  PubMed  Google Scholar 

  5. Shimaoka, T., Kume, N., Minami, M., Hayashida, K., Sawamura, T., Kita, T., et al. (2001). LOX-1 supports adhesion of gram-positive and gram-negative bacteria. The Journal of Immunology, 166(8), 5108–5114.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy, J. E., Tacon, D., Tedbury, P. R., Hadden, J. M., Knowling, S., Sawamura, T., et al. (2006). LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochemical Journal, 393(1), 107–115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shih, H. H., Zhang, S., Cao, W., Hahn, A., Wang, J., Paulsen, J. E., et al. (2009). CRP is a novel ligand for the oxidized LDL receptor LOX-1. American Journal Physiology: Heart and Circulatory Physiology, 296(5), H1643–H1650.

    CAS  Google Scholar 

  8. Wang, X., Philips, M. I., & Mehta, J. L. (2011). LOX-1 and angiotensin receptors, and their interplay. Cardiovascular Drugs and Therapeutics, 25, 401–417.

    Article  CAS  Google Scholar 

  9. Minami, M., Kume, N., Kataoka, H., Morimoto, M., Hayashida, K., Sawamura, T., et al. (2000). Transforming growth factor-B(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochemical and Biophysical Research Communications, 272, 357–361.

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Morimoto, M., Hayashida, K., et al. (2001). Oxidized LDL modulates Bax/Bcl-2 through the lectin-like Ox-LDL receptor-1 in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 955–960.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J., Mehta, J. L., Zhang, X., Singh, B. K., & Li, D. (2004). Role of LOX-1 in expression of apoptotic proteins and activation of caspase pathways in human coronary artery endothelial cells. Circulation Research, 94, 370–376.

    Article  CAS  PubMed  Google Scholar 

  12. Li, D., Liu, L., Chen, H., Sawamura, T., Ranganathan, S., & Mehta, J. L. (2003). LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation, 107(4), 612–617.

    Article  CAS  PubMed  Google Scholar 

  13. Eto, H., Miyata, M., Kume, N., Minami, M., Itabe, H., Orihara, K., et al. (2006). Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury. Biochemical and Biophysical Research Communications, 341(2), 591–598.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, R., Teng, Y., Huang, Y., Gu, J., & Li, M. (2010). Protein kinase C-alpha activation induces NF-kB-dependent VCAM-1 expression in cultured human umbilical vein endothelial cells treated with sera from preeclamptic patients. Gynecologic and Obstetric Investigation, 69(2), 101–108.

    Article  CAS  PubMed  Google Scholar 

  15. Ryoo, S., Bhunia, A., Chang, F., Shoukas, A., Berkowitz, D. E., & Romer, L. H. (2011). OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis, 214(2), 279–287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Xu, S., Ogura, S., Chen, J., Little, P. J., Moss, J., & Liu, P. (2013). LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cellular and Molecular Life Sciences, 70, 2859–2872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Taye, A., & El-Sheikh, A. A. K. (2013). Lectin-like oxidized low-density lipoprotein receptor 1 pathways. European Journal of Clinical Investigation, 743, 740–745.

    Article  Google Scholar 

  18. Kakinuma, T., Yasuda, T., Nakagawa, T., Hiramitsu, T., Akiyoshi, M., Akagi, M., et al. (2004). Lectin-like oxidized low-density lipoprotein receptor 1 mediates matrix metalloproteinase 3 synthesis enhanced by oxidized low-density lipoprotein in rheumatoid arthritis cartilage. Arthritis & Rheumatology, 50(11), 3495–3503.

    Article  CAS  Google Scholar 

  19. Lee, H., Park, H., Kim, Y. J., Kim, H. J., Ahn, Y. M., Park, B., et al. (2005). Expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in human preeclamptic placenta: possible implications in the process of trophoblast apoptosis. Placenta, 26(2), 226–233.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, R., Ding, G., Liang, W., Chen, C., & Yang, H. (2010). Role of LOX-1 and ROS in oxidized low-density lipoprotein induced epithelial-mesenchymal transition of NRK52E. Lipids in Health and Disease, 19(9), 120.

    Article  Google Scholar 

  21. Liang, M., Zhang, P., & Fu, J. (2007). Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Letters, 258(1), 31–37.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta, J. L., Sanada, N., Hu, C. P., Chen, J., Dandapat, A., Sugawara, F., et al. (2007). Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circulation Research, 100, 1634–1642.

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh, C. C., Yen, M. H., Yen, C. H., & Lau, Y. T. (2001). Oxidized lowdensity lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovascular Research, 49(1), 135–145.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, C., Dandapat, A., Sun, L., Chen, J., Marwall, M. R., Romeo, F., et al. (2008). LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovascular Research, 79(2), 287–293.

    Article  CAS  PubMed  Google Scholar 

  25. Hu, C., Bum-Yong, K., Megyesi, J., Kaushal, G. P., Safirstein, R., & Mehta, J. L. (2009). Deletion of LOX-1 attenuates renal injury following angiotensin II infusion. Kidney International, 76, 521–527.

    Article  CAS  PubMed  Google Scholar 

  26. Presta, L. G., Chen, H., O’Connor, S. J., Chisholm, V., Meng, G., Krummen, L., et al. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Research, 57(20), 4593–4595.

    CAS  PubMed  Google Scholar 

  27. van Duleman, H. M., van Deveneter, S. J., Hommes, D. W., Bill, H. A., Jansen, J., Tytgat, G. N., et al. (1997). Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology, 109(1), 129–135.

    Article  Google Scholar 

  28. Elliott, M. J., Mini, R. N., Feldman, M., Kalden, J. R., Antoni, C., Smolen, J. S., et al. (1994). Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet, 344(8930), 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  29. Murase, T., Kume, N., Kataoka, H., Minami, M., Sawamura, T., Masaki, T., et al. (2000). Identification of soluble forms of lectin-like oxidised receptor-1. Arteriosis Sclerosis and Vascular Biology, 20(3), 715–720.

    Article  CAS  Google Scholar 

  30. Mitsuoka, H., Kume, N., Hayashida, K., Inui-Hayashida, A., Aramaki, Y., Toyohara, M., et al. (2009). Interleukin 18 stimulates release of soluble lectin-like oxidized LDL receptor-1 (sLOX-1). Atherosclerosis, 202(1), 176–182.

    Article  CAS  PubMed  Google Scholar 

  31. Biocca, S., Arcangeli, T., Tabliaferri, E., Testa, B., Vindigni, G., Oteri, F., et al. (2013). Simulative and experimental investigation on the cleavage site that generates the soluble human LOX-1. Archives of Biochemistry and Biophysics, 540(1–2), 9–18.

    Article  CAS  PubMed  Google Scholar 

  32. Brinkley, T. E., Kume, N., Mitsuoka, H., Phares, D. A., & Hagberg, J. M. (2008). Elevated soluble lectin-like oxidized LDL receptor 1 (LOX-1) levels in obese postmenopausal women. Obesity, 16(6), 1454–1456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Tan, K. C., Shiu, S. W., Wong, Y., Leng, L., & Bucala, R. (2007). Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus. The Journal of Lipid Research, 49(7), 1438–1444.

    Article  Google Scholar 

  34. Yavuzer, S., Yavuzer, H., Cengiz, M., Erman, H., Altiparmak, M. R., Korkmazer, B., et al. (2015). Endothelial damage in white coat hypertension: role of lectin-like oxidized low-density lipoprotein-1. Journal of Human Hypertension, 29(2), 92–98.

    Article  CAS  PubMed  Google Scholar 

  35. Takanabe-Mori, R., Ono, K., Wada, H., Takaya, T., Ura, S., Yamakage, H., et al. (2013). Lectin-like oxidized low-density lipoprotein receptor-1 plays an important role in vascular inflammation in current smokers. Journal of Atherosclerosis and Thrombosis, 20(6), 585–590.

    Article  CAS  PubMed  Google Scholar 

  36. Civelek, S., Kutnu, M., Uzun, H., Erdenen, F., Altunoglu, E., Andican, G., et al. (2014). Soluble lectin-like oxidized LDL receptor 1 as a possible mediator of endothelial dysfunction in patients with metabolic syndrome. Journal of Clinical Laboratory Analysis, 29(3), 184–190.

    Article  PubMed  Google Scholar 

  37. Hayashida, K., Kume, N., Murase, T., Minami, M., Nakagawa, D., Inada, T., et al. (2005). Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation, 112(6), 812–818.

    Article  CAS  PubMed  Google Scholar 

  38. Kume, N., Mitsuoka, H., Hayashida, K., Tanaka, M., Kominami, G., & Kita, T. (2010). Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a sensitive and specific biomarker for acute coronary syndrome—comparison with other biomarker. Journal of Cardiology, 56(2), 159–165.

    Article  PubMed  Google Scholar 

  39. Misaka, T., Suzuki, S., Sakamoto, N., Yamaki, T., Sugimoto, K., Kunii, H., et al. (2014). Significance of soluble lectin-like oxidized LDL receptor-1 levels in systemic and coronary circulation in acute coronary syndrome. BioMed Research International. doi:10.1155/2014/649185.

    PubMed Central  PubMed  Google Scholar 

  40. Inoue, N., Tomonori, O., Yoshihiro, K., Fujita, Y., Sato, Y., Mamoru, N., et al. (2010). LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clinical Chemistry, 56(4), 550–558.

    Article  CAS  PubMed  Google Scholar 

  41. Iso, H. (2011). Lifestyle and cardiovascular disease in Japan. Journal of Atherosclerosis and Thrombosis, 18(2), 83–88.

    Article  PubMed  Google Scholar 

  42. Virmani, R., Burke, A. P., Kolodgie, F. D., & Farb, A. (2003). Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. Journal of Interventional Cardiology, 16(3), 267–272.

    Article  PubMed  Google Scholar 

  43. Kobayashi, N., Takano, M., Hata, N., Kume, N., Yamamoto, M., Yokoyama, S., et al. (2013). Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a valuable diagnostic marker for rupture of thin-cap fibroatheroma: verification by optical coherence tomography. International Journal of Cardiology, 168(4), 3217–3223.

    Article  PubMed  Google Scholar 

  44. Li, B., Zhang, L., Yang, X., Liu, X., & Ren, Y. (2010). Serum sLOX-1 levels are associated with the presence and severity of angiographic coronary artery disease in patients with metabolic syndrome. Clinical & Investigative Medicine, 33(6), E398–E404.

    CAS  Google Scholar 

  45. Ishikawa, M., Ito, H., Akyoshi, M., Kume, N., Yoshitomi, H., Mitsuoka, H., et al. (2012). Lectin-like oxidized low-density lipoprotein receptor 1 signal is a potent biomarker and therapeutic target for human rheumatoid arthritis. Arthritis and Rheumatology, 64(4), 1024–1034.

    Article  CAS  Google Scholar 

  46. Li, D., Williams, V., Liu, L., Chen, H., Sawamura, T., Antakli, T., et al. (2002). LOX-1 inhibition in myocardial ischemia-reperfusion injury: modulation of MMP-1 and inflammation. American Journal Physiology: Heart and Circulatory Physiology, 283(5), H1795–H1801.

    CAS  Google Scholar 

  47. Li, D., Williams, V., Liu, L., Chen, H., Sawamura, T., Romeo, F., et al. (2003). Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. Journal of the American College of Cardiology, 41(6), 1048–1055.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, L., Gong, H., Zhou, N., Jiang, G., Wu, J., Li, L., et al. (2010). Oxidized low-density lipoprotein-induced cardiac hypertrophy is partly mediated by lectin-like oxidized low-density lipoprotein receptor-1 activating angiotensin II type 1 receptor independent of angiotensin II. Beijing, China: World Congress of Cardiology Scientific Sessions.

    Google Scholar 

  49. Nakano, A., Inoue, N., Sato, Y., Nishimichi, N., Takikawa, K., Fujita, Y., et al. (2010). LOX-1 mediates vascular lipid retention under hypertensive state. Journal of Hypertension, 28(6), 1273–1280.

    CAS  PubMed  Google Scholar 

  50. Lund, A. K., Lucero, J., Harman, M., Madden, M. C., McDonald, J. D., Seagrave, J. C., et al. (2011). The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions. American Journal of Respiratory and Critical Care Medicine, 184(1), 82–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hinagata, J. I., Kakutani, M., Fuji, T., Naruko, T., Inoue, N., Fujita, Y., et al. (2006). Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovascular Research, 69(1), 263–271.

    Article  CAS  PubMed  Google Scholar 

  52. Dominguez, J. H., Mehta, J. L., Li, D., Wu, P., Kelly, K. J., Packer, C. S., et al. (2008). Anti-LOX-1 therapy in rats with diabetes and dyslipidemia: ablation of renal vascular and epithelial manifestations. American Journal of Physiology, 894(1), F110–F119.

    Google Scholar 

  53. Ishikawa, M., Ito, H., Furu, M., Murata, K., Shibuya, H., Yoshitomi, H., et al. (2013). A crucial role for lectin-like oxidized LDL receptor-1 on joint inflammation in RA. Madrid, Spain: Annual European Congress of Rheumatology of the European League Against Rheumatism.

    Google Scholar 

  54. Nakagawa, T., Akagi, M., Hoshikawa, H., Chen, M., Yasuda, T., Mukai, S., et al. (2002). Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis and Rheumatology, 46(9), 2486–2494.

    Article  CAS  Google Scholar 

  55. Honjo, M., Nakamura, K., Yamashiro, K., Kiryu, J., Tanihara, H., McEvoy, L. M., et al. (2003). Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1274–1279.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Landsberger, M., Zhou, J., Wilk, S., Thaumuller, C., Pavlovic, D., Otto, M., et al. (2010). Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces leukocyte adhesion within the intestinal microcirculation in experimental endotoxemia in rats. Critical Care, 14(6), R223.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Zhang, P., Liu, M. C., Cheng, L., Liang, M., Ji, H. L., & Fu, J. (2009). Blockade of LOX-1 prevents endotoxin-induced acute lung inflammation and injury in mice. Journal of Innate Immunity, 1(4), 358–365.

    Article  CAS  PubMed  Google Scholar 

  58. Vincent, A. M., McLean, L. L., Pande, M., Oh, S. S., & Feldman, E. L. (2012). LOX-1-mediated injury in sensory neurons in type 2 diabetes. International Journal of Diabetes and Metabolism, 20(2), 59–63.

    Google Scholar 

  59. Akamatsu, T., Dai, H., Mizuguchi, M., Goto, Y. I., Oka, A., & Itoh, M. (2014). LOX-1 is a novel therapeutic target in neonatal hypoxic-ischemic encephalopathy. American Journal of Pathology, 184(6), 1843–1852.

    Article  CAS  PubMed  Google Scholar 

  60. Ishino, S., Mukai, T., Kuge, Y., Kume, N., Ogawa, M., Takai, N., et al. (2008). Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (LOX-1) with99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque. Journal of Nuclear Medicine, 49(10), 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  61. Li, D., Patel, A. R., Klibanov, A. L., Kramer, C. M., Ruiz, M., Kang, B. Y., et al. (2010). Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circulation: Cardiovascular Imaging, 3(4), 464–472.

    PubMed Central  CAS  Google Scholar 

  62. De Vos, J., Broisat, A., Totsek, J., Ghezzi, C., Muyldermans, S., Lahouette, T., et al. (2012). Development of LOX-1 nanobodies for imaging of atherosclerosis. Journal of Nuclear Medicine, 53(4), 667.

    Google Scholar 

  63. Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., Tyson, J. E., McDonald, S. A., Donovan, E. F., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. New England Journal of Medicine, 353(15), 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  64. Maini, R., St Clair, E. W., Breedveld, F., Furst, D., Kalden, J., Weisman, M., et al. (1999). Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet, 354(9194), 1932–1939.

    Article  CAS  PubMed  Google Scholar 

  65. Huizinga, T. W., Fleischmann, R. M., Jasson, M., Radin, A., van Adelsberg, J., Fiore, S., et al. (2014). Extended report: Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Annals of the Rheumatic Diseases, 73(9), 1626–1634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Pedersen, T. R., Faergeman, O., Kaastelein, J. J., Olsson, A. G., Tikkanen, M. J., Holme, I., et al. (2005). High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA, 294(19), 2437–2445.

    Article  CAS  PubMed  Google Scholar 

  67. The SPS3 Investigators. (2012). Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. New England Journal of Medicine, 367(9), 817–825.

    Article  PubMed Central  Google Scholar 

  68. Lundin, J., Kimby, E., Björkholm, M., Broliden, P. A., Celsing, F., Hjalmar, V., et al. (2002). Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood, 100(3), 768–773.

    Article  CAS  PubMed  Google Scholar 

  69. Meissner, H. C., Groothius, J. R., Rodriguez, W. J., Welliver, R. C., Hogg, G., Gray, P. H., et al. (1999). Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrobial Agents and Chemotherapy, 43(5), 1183–1188.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Brown, M. T., Coleman, R. E., Friedman, A. H., Freidman, H. S., McLendon, R. E., Reiman, R., et al. (1996). Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clinical Cancer Research, 2(6), 963–972.

    CAS  PubMed  Google Scholar 

  71. Leveque, D., Winiewski, S., & Jehl, F. (2005). Pharmacokinetics of therapeutic monoclonal antibodies used in oncology. Anticancer Research, 25, 2327–2344.

    CAS  PubMed  Google Scholar 

  72. Muller, P. Y., & Brennan, F. R. (2009). Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clinical Pharmacology & Therapeutics, 85(3), 247–258.

    Article  CAS  Google Scholar 

  73. Hansel, T., Kroopshofer, H., Singer, T., Mitchell, J. A., & George, A. J. (2010). The safety and side effects of onoclonal antibodies. Nature Reviews Drug Discovery, 9(4), 35–38.

    Article  Google Scholar 

  74. Shaughnessy, A. F. (2012). Monoclonal antibodies: magic bullets with a hefty price tag. British Medical Journal. doi:10.1136/bmj.e8346.

    Google Scholar 

  75. Greving, J. P., Visseren, F. L., de Wit, G. A., & Algra, A. (2011). Statin treatment for primary prevention of vascular disease: whom to treat? Cost-effectiveness analysis. British Medical Journal. doi:10.1136/bmj.d1672.

    PubMed  Google Scholar 

  76. Park, K., Kwon, I. C., & Park, K. (2011). Oral protein delivery: current status and future prospect. Reactive and Functional Polymers, 71(3), 280–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leeds Teaching Hospitals National Health Service Trust (J.D.S.) and a PhD scholarship from the Brunei government (I.A.Z.).

Compliance with Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan De Siqueira.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Siqueira, J., Abdul Zani, I., Russell, D.A. et al. Clinical and Preclinical Use of LOX-1-Specific Antibodies in Diagnostics and Therapeutics. J. of Cardiovasc. Trans. Res. 8, 458–465 (2015). https://doi.org/10.1007/s12265-015-9655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9655-z

Keywords

Navigation