Skip to main content
Log in

Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. A primary goal of translational cardiovascular research is recognizing whether disease-related changes in phenotype can be averted by eliminating or reducing the effects of environmental epigenetic risks. There may be significant medical benefits in using gene-by-environment interaction knowledge to prevent or reverse organ abnormalities and disease. This survey proposes that “environmental” forces associated with diastolic RV/LV rotatory flows exert important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations. Mechanisms analogous to Murray’s law of hydrodynamic shear-induced endothelial cell modulation of vascular geometry are likely to link diastolic vortex-associated shear, torque and “squeeze” forces to RV/LV adaptations. The time has come to explore a new paradigm in which such forces play a fundamental epigenetic role, and to work out how heart cells react to them. Findings from various imaging modalities, computational fluid dynamics, molecular cell biology and cytomechanics are considered. The following are examined, among others: structural dynamics of myocardial cells (endocardium, cardiomyocytes, and fibroblasts), cytoskeleton, nucleoskeleton, and extracellular matrix; mechanotransduction and signaling; and mechanical epigenetic influences on genetic expression. To help integrate and focus relevant pluridisciplinary research, rotatory RV/LV filling flow is placed within a working context that has a cytomechanics perspective. This new frontier in cardiac research should uncover versatile mechanistic insights linking filling vortex patterns and attendant forces to variable expressions of gene regulation in RV/LV myocardium. In due course, it should reveal intrinsic homeostatic arrangements that support ventricular myocardial function and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pasipoularides, A. (2010). Heart's Vortex: Intracardiac Blood Flow Phenomena (p. 960). Shelton: CT: People's Medical Publishing House.

    Google Scholar 

  2. Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–69.

    PubMed  Google Scholar 

  3. Pasipoularides, A. (2015). Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: Part 1. Journal of Cardiovascular Translational Research, 8, 76–87. doi:10.1007/s12265-015-9611-y.

    PubMed  Google Scholar 

  4. Hines, L. M., Stampfer, M. J., Ma, J., et al. (2001). Genetic variation in alcohol dehydrogenase and the beneficial effect of moderate alcohol consumption on myocardial infarction. New England Journal of Medicine, 344, 549–555.

    CAS  PubMed  Google Scholar 

  5. Talmud, P. J., Stephens, J. W., Hawe, E., et al. (2005). The significant increase in cardiovascular disease risk in APOEepsilon4 carriers is evident only in men who smoke: potential relationship between reduced antioxidant status and ApoE4. Annals of Human Genetics, 69, 613–622.

    CAS  PubMed  Google Scholar 

  6. Brull, D. J., Dhamrait, S., Moulding, R., et al. (2002). The effect of fibrinogen genotype on fibrinogen levels after strenuous physical exercise. Thrombosis and Haemostasis, 87, 37–41.

    CAS  PubMed  Google Scholar 

  7. Abu-Amero, K. K., Al-Boudari, O. M., Mohamed, G. H., & Dzimiri, N. (2006). T null and M null genotypes of the glutathione S-transferase gene are risk factors for CAD independent of smoking. BMC Medical Genetics, 7, 38.

    PubMed Central  PubMed  Google Scholar 

  8. Pimstone, S. N., Sun, X. M., du Souich, C., Frohlich, J. J., Hayden, M. R., & Soutar, A. K. (1998). Phenotypic variation in heterozygous familial hypercholesterolemia: a comparison of Chinese patients with the same or similar mutations in the LDL receptor gene in China or Canada. Arteriosclerosis Thrombosis and Vascular Biology, 18, 309–315.

    CAS  Google Scholar 

  9. Garrod, A. (1902). The incidence of alkaptonuria: a study in chemical individuality. Lancet, 2, 1616–20.

    CAS  Google Scholar 

  10. Qin, Z., Buehler, M. J., & Kreplak, L. (2010). A multi-scale approach to understand the mechanobiology of intermediate filaments. Journal of Biomechanics, 43, 15–22.

    PubMed  Google Scholar 

  11. Fuchs, E., & Cleveland, D. W. (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350), 514–9.

    CAS  PubMed  Google Scholar 

  12. Calaghan, S. C., Le Guennec, J. Y., & White, E. (2004). Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Progress in Biophysics and Molecular Biology, 84, 29–59.

    CAS  PubMed  Google Scholar 

  13. Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M., & Psarras, S. (2007). Muscle intermediate filaments and their links to membranes and membranous organelles. Experimental Cell Research, 313, 2063–76.

    CAS  PubMed  Google Scholar 

  14. Deroanne, C. F., Lapiere, C. M., & Nusgens, B. V. (2001). In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovascular Research, 49, 647–58.

    CAS  PubMed  Google Scholar 

  15. Buss, F., & Kendrick-Jones, J. (2011). Multifunctional myosin VI has a multitude of cargoes. Proceedings of the National Academy of Sciences of the United States of America, 108, 5927–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hoffman, L. M., Jensen, C. C., Chaturvedi, A., Yoshigi, M., & Beckerle, M. C. (2012). Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Molecular Biology of the Cell, 23, 1846–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Mengistu, M., Brotzman, H., Ghadiali, S., & Lowe-Krentz, L. (2011). Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. Journal of Cellular Physiology, 226, 110–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Granzier, H. L., & Irving, T. C. (1995). Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophysical Journal, 68, 1027–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Gregorio, C. C., & Antin, P. B. (2000). To the heart of myofibril assembly. Trends in Cell Biology, 10, 355–62.

    CAS  PubMed  Google Scholar 

  20. Zile, M., Koide, M., Sato, H., et al. (1999). Role of microtubules in the contractile dysfunction of hypertrophied myocardium. Journal of the American College of Cardiology, 33, 250–60.

    CAS  PubMed  Google Scholar 

  21. Tagawa, H., Wang, N., Narishige, T., Ingber, D. E., Zile, M. R., & Cooper, G. (1997). Cytoskeletal mechanics in pressure overload cardiac hypertrophy. Circulation Research, 80, 281–89.

    CAS  PubMed  Google Scholar 

  22. Haggart, C. R., Ames, E. G., Lee, J. K., & Holmes, J. W. (2014). Effects of stretch and shortening on gene expression in intact myocardium. Physiological Genomics, 46, 57–65.

    PubMed Central  PubMed  Google Scholar 

  23. Ingber, D. E., & Tensegrity, I. (2003). Cell structure and hierarchical systems biology. Journal of Cell Science, 116, 1157–73.

    CAS  PubMed  Google Scholar 

  24. Kumar, S., Maxwell, I. Z., Heisterkamp, A., et al. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90, 3762–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Trepat, X., Deng, L., An, S. S., et al. (2007). Universal physical responses to stretch in the living cell. Nature, 447, 592–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Soares, E., Silva, M., Depken, M., Stuhrmann, B., Korsten, M., MacKintosh, F. C., & Koenderink, G. H. (2011). Active multistage coarsening of actin networks driven by myosin motors. Proceedings of the National Academy of Sciences, 108, 9408–13.

    Google Scholar 

  27. Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–80.

    CAS  PubMed  Google Scholar 

  28. Geiger, B., & Bershadsky, A. (2002). Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell, 110, 139–42.

    CAS  PubMed  Google Scholar 

  29. Sarantitis, I., Papanastasopoulos, P., Manousi, M., Baikoussis, N. G., & Apostolakis, E. (2012). The cytoskeleton of the cardiac muscle cell. Hellenic Journal of Cardiology, 53, 367–79.

    PubMed  Google Scholar 

  30. Kostin, S., Hein, S., Arnon, E., Scholz, D., & Schaper, J. (2000). The cytoskeleton and related proteins in the human failing heart. Heart Failure Reviews, 5, 271–80.

    CAS  PubMed  Google Scholar 

  31. Ervasti, J. M. (2003). Costameres: the Achilles’ heel of Herculean muscle. Journal of Biological Chemistry, 278, 13591–4.

    CAS  PubMed  Google Scholar 

  32. Samarel, A. M. (2014). Focal adhesion signaling in heart failure. Pflügers Archiv - European Journal of Physiology, 466, 1101–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wheelock, M. J., & Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Annual Review of Cell and Developmental Biology, 19, 207–35.

    CAS  PubMed  Google Scholar 

  34. Kim, S. A., Tai, C.-Y., Mok, L.-P., Mosser, E. A., & Schuman, E. M. (2011). Calcium dependent dynamics of cadherin interactions at cell-cell junctions. Proceedings of the National Academy of Sciences of the United States of America, 108, 9857–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Yap, A. S., Crampton, M. S., & Hardin, J. (2007). Making and breaking contacts: the cellular biology of cadherin regulation. Current Opinion in Cell Biology, 19, 508–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Resink, T. J., Philippova, M., Joshi, M. B., Kyriakakis, E., & Erne, P. (2009). Cadherins and cardiovascular disease. Swiss Medical Weekly, 139, 122–34.

    CAS  PubMed  Google Scholar 

  37. Koenderink, G. H., Dogic, Z., Nakamura, F., et al. (2009). An active biopolymer network controlled by molecular motors. Proceedings of the National Academy of Sciences, 106, 15192–7.

    CAS  Google Scholar 

  38. Wen, Q., & Janmey, P. A. (2011). Polymer physics of the cytoskeleton. Current Opinion in Solid State and Materials Science, 15, 177–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Pasipoularides, A., Vlachos, P. P., & Little, W. C. (2015). Vortex formation time is not an index of ventricular function. Journal of Cardiovascular Translational Research, 8, 54–8. doi:10.1007/s12265-015-9607-7.

    PubMed  Google Scholar 

  40. Pasipoularides, A. (2015). Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, 56, 85–95.

    PubMed  Google Scholar 

  41. Yurchenco, P. (2011). Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harbor Perspectives in Biology, 3, a004911.

    PubMed Central  PubMed  Google Scholar 

  42. Sivakumar, P., Gupta, S., Sarkar, S., & Sen, S. (2008). Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Molecular and Cellular Biochemistry, 307, 159–67.

    CAS  PubMed  Google Scholar 

  43. Page-McCaw, A., Ewald, A. J., & Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology, 8, 221–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Tyagi, S. C., & Joshua, I. G. (2014). Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Canadian Journal of Physiology and Pharmacology, 92, 521–3.

    CAS  PubMed  Google Scholar 

  45. Mujumdar, V. S., Smiley, L. M., & Tyagi, S. C. (2001). Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength. International Journal of Cardiology, 79, 277–86.

    CAS  PubMed  Google Scholar 

  46. Pasipoularides, A. D., Shu, M., Womack, M. S., Shah, A., Von Ramm, O., & Glower, D. D. (2003). RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. American Journal of Physiology. Heart and Circulatory Physiology, 284, H56–H65.

    CAS  PubMed  Google Scholar 

  47. Pasipoularides, A. (2013). Right and left ventricular diastolic pressure–volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–52.

    PubMed Central  PubMed  Google Scholar 

  48. Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. American Heart Journal, 162, 798–810.

    PubMed  Google Scholar 

  49. Muiznieks, L. D., Weiss, A. S., & Keeley, F. W. (2010). Structural disorder and dynamics of elastin. Biochemistry and Cell Biology, 88, 239–50.

    CAS  PubMed  Google Scholar 

  50. Castaldo, C., Di Meglio, F., Miraglia, R., et al. (2013). Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. BioMed Research International, 2013, 352370.

    PubMed Central  PubMed  Google Scholar 

  51. Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: the renaissance cell. Circulation Research, 105, 1164–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Thompson, S. A., Blazeski, A., Copeland, C. R., et al. (2014). Acute slowing of cardiac conduction in response to myofibroblast coupling to cardiomyocytes through N-cadherin. Journal of Molecular and Cellular Cardiology, 68, 29–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Schéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine (Berl), 85, 825–36.

    Google Scholar 

  54. Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115, 3861–3.

    CAS  PubMed  Google Scholar 

  55. Smith, M. L., Gourdon, D., Little, W. C., et al. (2007). Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biology, 5(10), e268.

    PubMed Central  PubMed  Google Scholar 

  56. Hynes, R. O. (2009). The extracellular matrix: not just pretty fibrils. Science, 326, 1216–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Fan, D., Takawale, A., Lee, J., & Kassiri, Z. (2012). Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis and Tissue Repair, 5, 15–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang, P., Valentijn, A. J., Gilmore, A. P., & Streuli, C. H. (2003). Early events in the anoikis program occur in the absence of caspase activation. Journal of Biological Chemistry, 278, 19917–25.

    CAS  PubMed  Google Scholar 

  59. Heidkamp, M. C., Bayer, A. L., Kalina, J. A., Eble, D. M., & Samarel, A. M. (2002). GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes. Circulation Research, 90, 1282–9.

    CAS  PubMed  Google Scholar 

  60. Provenzano, P. P., & Keely, P. J. (2011). Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. Journal of Cell Science, 124, 1195–205.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Harburger, D. S., & Calderwood, D. A. (2009). Integrin signalling at a glance. Journal of Cell Science, 122(Pt 2), 159–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Bhat, R., & Bissell, M. J. (2013). Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. WIREs Developmental Biology. doi:10.1002/wdev.130.

    PubMed  Google Scholar 

  63. Tamkun, J. W., DeSimone, D. W., Fonda, D., et al. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46, 271–82.

    CAS  PubMed  Google Scholar 

  64. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    CAS  PubMed  Google Scholar 

  65. Schwartz, M. A. (2010). Integrins and extracellular matrix in mechanotransduction. Cold Spring Harbor Perspectives in Biology, 2, a005066.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213, 565–73.

    CAS  PubMed  Google Scholar 

  67. Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeletal linkages. Cell, 88, 39–48.

    CAS  PubMed  Google Scholar 

  68. Takada, Y., Ye, X., & Simon, S. (2007). The integrins. Genome Biology, 8, 215.1–215.9.

    Google Scholar 

  69. Hoffman, B. D., Grashoff, C., & Schwartz, M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475, 316–23.

    CAS  PubMed  Google Scholar 

  70. Peng, X., Kraus, M. S., Wei, H., et al. (2006). Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. Journal of Clinical Investigation, 116, 217–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Peng, X., Wu, X., Druso, J. E., et al. (2008). Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 6638–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Legate, K. R., Wickström, S. A., & Fässler, R. (2009). Genetic and cell biological analysis of integrin outside-in signaling. Genes and Development, 23, 397–418.

    CAS  PubMed  Google Scholar 

  73. Olesen, S. P., Clapham, D. E., & Davies, P. F. (1988). Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature, 331, 168–70.

    CAS  PubMed  Google Scholar 

  74. Brakemeier, S., Eichler, I., Hopp, H., Kohler, R., & Hoyer, J. (2002). Up-regulation of endothelial stretch-activated cation channels by fluid shear stress. Cardiovascular Research, 53, 209–18.

    CAS  PubMed  Google Scholar 

  75. Bray, M. A., Sheehy, S. P., & Parker, K. K. (2008). Sarcomere alignment is regulated by myocyte shape. Cell Motility and the Cytoskeleton, 65, 641–51.

    PubMed Central  PubMed  Google Scholar 

  76. Salameh, A., & Dhein, S. (2013). Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochimica et Biophysica Acta, 1828, 147–56.

    CAS  PubMed  Google Scholar 

  77. Yefimov, S., van der Giessen, E., Onck, P. R., & Marrink, S. J. (2008). Mechanosensitive membrane channels in action. Biophysical Journal, 94, 2994–3002.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Gervasio, O. L., Phillips, W. D., Cole, L., & Allen, D. G. (2011). Caveolae respond to cell stretch and contribute to stretch-induced signaling. Journal of Cell Science, 124, 3581–90.

    CAS  PubMed  Google Scholar 

  79. Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E., & Davies, P. F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. American Journal of Physiology Heart and Circulatory Physiology, 285, H1720–9.

    CAS  PubMed  Google Scholar 

  80. Parton, R. G., & del Pozo, M. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 14, 98–112.

    CAS  PubMed  Google Scholar 

  81. Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75, 519–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Tamada, M., Sheetz, M. P., & Sawada, Y. (2004). Activation of a signaling cascade by cytoskeleton stretch. Developmental Cell, 7, 709–18.

    CAS  PubMed  Google Scholar 

  83. Roca-Cusachs, P., del Rio, A., Puklin-Faucher, E., Gauthier, N. C., Biais, N., & Sheetz, M. P. (2013). Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proceedings of the National Academy of Sciences of the United States of America, 110, E1361–E1370.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Vogel, V. (2006). Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annual Review of Biophysics and Biomolecular Structure, 35, 459–88.

    CAS  PubMed  Google Scholar 

  85. Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7, 265–75.

    CAS  PubMed  Google Scholar 

  86. Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260, 1124–7.

    CAS  PubMed  Google Scholar 

  87. Shapiro, L., Fannon, A. M., Kwong, P. D., et al. (1995). Structural basis of cell-cell adhesion by cadherins. Nature, 374, 327–37.

    CAS  PubMed  Google Scholar 

  88. Kim, S. A., Tai, C. Y., Mok, L. P., Mosser, E. A., & Schuman, E. M. (2011). Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proceedings of the National Academy of Sciences, 108, 9857–62.

    CAS  Google Scholar 

  89. Calderwood, D. A. (2004). Integrin activation. Journal of Cell Science, 117, 657–66.

    CAS  PubMed  Google Scholar 

  90. Tarbell, J. M., & Pahakis, M. Y. (2006). Mechanotransduction and the glycocalyx. Journal of Internal Medicine, 259, 339–50.

    CAS  PubMed  Google Scholar 

  91. Critchley, D. R. (2004). Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochemical Society Transactions, 32, 831–6.

    CAS  PubMed  Google Scholar 

  92. Giannone, G., Mège, R. M., & Thoumine, O. (2009). Multi-level molecular clutches in motile cell processes. Trends in Cell Biology, 19, 475–86.

    CAS  PubMed  Google Scholar 

  93. Liu, Z., Tan, J. L., Cohen, D. M., et al. (2010). Mechanical tugging force regulates the size of cell–cell junctions. Proceedings of the National Academy of Sciences of the United States of America, 107, 9944–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Morgan, M. R., Humphries, M. J., & Bass, M. D. (2007). Synergistic control of cell adhesion by integrins and syndecans. Nature Reviews Molecular Cell Biology, 8, 957–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Sastry, S. K., & Burridge, K. (2000). Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Experimental Cell Research, 261, 25–36.

    CAS  PubMed  Google Scholar 

  96. Martinez-Rico, C., Pincet, F., Thiery, J. P., & Dufour, S. (2010). Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. Journal of Cell Science, 123, 712–22.

    CAS  PubMed  Google Scholar 

  97. Samarel, A. M. (2005). Costameres, focal adhesions, and cardiomyocyte mechanotransduction. American Journal of Physiology. Heart and Circulatory Physiology, 289, H2291–301.

    CAS  PubMed  Google Scholar 

  98. McCain, M. L., & Parker, K. K. (2011). Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflügers Archiv-European Journal of Physiology, 462, 89–104.

    CAS  PubMed  Google Scholar 

  99. Chopra, A., Tabdanov, E., Patel, H., Janmey, P. A., & Kresh, J. Y. (2011). Cardiac myocyte remodeling mediated by N-cadherin- dependent mechanosensing. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1252–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Wilson, A. J., Schoenauer, R., Ehler, E., Agarkova, I., & Bennett, P. M. (2014). Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cellular and Molecular Life Sciences, 71, 165–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Perriard, J. C., Hirschy, A., & Ehler, E. (2003). Dilated cardiomyopathy: a disease of the intercalated disc? Trends in Cardiovascular Medicine, 13, 30–8.

    PubMed  Google Scholar 

  102. Pilichou, K., Nava, A., Basso, C., et al. (2006). Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation, 113, 1171–79.

    CAS  PubMed  Google Scholar 

  103. Wang, N., Tytell, J. D., & Ingber, D. E. (2009). Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature Reviews Molecular Cell Biology, 10, 75–82.

    CAS  PubMed  Google Scholar 

  104. Kull, F. J., & Endow, S. A. (2013). Force generation by kinesin and myosin cytoskeletal motor proteins. Journal of Cell Science, 126, 9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kastritis, P. L., & Bonvin, A. M. (2012). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of the Royal Society Interface, 10, 20120835.

    Google Scholar 

  106. Gustavsson, M., Traaseth, N. J., CB Karim, C. B., et al. (2011). Lipid-mediated folding/unfolding of phospholamban as a regulatory mechanism for the sarcoplasmic reticulum Ca2+-ATPase. Journal of Molecular Biology, 408, 755–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. MacLennan, D. H., & Kranias, E. G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nature Reviews Molecular Cell Biology, 4, 566–77.

    CAS  PubMed  Google Scholar 

  108. Hu, S., Chen, J., Butler, J. P., & Wang, N. (2005). Prestress mediates force propagation into the nucleus. Biochemical and Biophysical Research Communications, 329, 423–8.

    CAS  PubMed  Google Scholar 

  109. Na, S., Collin, O., Chowdhury, F., et al. (2008). Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 105, 6626–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.

    CAS  PubMed  Google Scholar 

  111. Pasipoularides, A. (2007). Complementarity and competitiveness of the intrinsic and extrinsic components of the total ventricular load: Demonstration after valve replacement in aortic stenosis Editorial. American Heart Journal, 153, 4–6.

    PubMed  Google Scholar 

  112. Ingber, D. E. (2008). Tensegrity-based mechanosensing from macro to micro. Progress in Biophysics and Molecular Biology, 97, 163–79.

    PubMed Central  PubMed  Google Scholar 

  113. Ingber, D. E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB Journal, 20, 811–827.

    CAS  PubMed  Google Scholar 

  114. Granzier, H. L., & Labeit, S. (2004). The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circulation Research, 94, 284–95.

    CAS  PubMed  Google Scholar 

  115. Dorn, G. W., II, Robbins, J., & Sugden, P. H. (2003). Phenotyping hypertrophy: eschew obfuscation. Circulation Research, 92, 1171–5.

    CAS  PubMed  Google Scholar 

  116. Blaauw, E., Lorenzen-Schmidt, I., Babiker, F. A., et al. (2013). Stretch-induced upregulation of connective tissue growth factor in rabbit cardiomyocytes. Journal of Cardiovascular Translational Research, 6, 861–9.

    PubMed  Google Scholar 

  117. Xu, L., Glass, C. K., & Rosenfeld, M. G. (1999). Coactivator and corepressor complexes in nuclear receptor function. Current Opinion in Genetics and Development, 9, 140–7.

    CAS  PubMed  Google Scholar 

  118. Dahl, K. N., & Kalinowski, A. (2011). Nucleoskeleton mechanics at a glance. Journal of Cell Science, 124, 675–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Webster, M., Witkin, K. L., & Cohen-Fix, O. (2009). Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. Journal of Cell Science, 122, 1477–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Starr, D. A., & Fridolfsson, H. N. (2010). Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annual Review of Cell and Developmental Biology, 26, 421–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Janmey, P. A., Wells, R. G., Assoian, R. K., & McCulloch, C. A. (2013). From tissue mechanics to transcription factors. Differentiation, 86, 112–20.

    CAS  PubMed  Google Scholar 

  122. Stroud, M. J., Banerjee, I., Veevers, J., & Chen, J. (2014). Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circulation Research, 114, 538–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Simon, D. N., & Wilson, K. L. (2011). The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nature Reviews Molecular Cell Biology, 12, 695–708.

    CAS  PubMed  Google Scholar 

  124. Tzur, Y. B., Wilson, K. L., & Gruenbaum, Y. (2006). SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton. Nature Reviews Molecular Cell Biology, 7, 782–8.

    CAS  PubMed  Google Scholar 

  125. Dahl, K. N., Ribeiro, A. J., & Lammerding, J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circulation Research, 102, 1307–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Nickerson, J. (2001). Experimental observations of a nuclear matrix. Journal of Cell Science, 114, 463–74.

    CAS  PubMed  Google Scholar 

  127. Orr, A. W., Helmke, B. P., Blackman, B. R., & Schwartz, M. A. (2006). Mechanisms of mechanotransduction. Developmental Cell, 10, 11–20.

    CAS  PubMed  Google Scholar 

  128. De, R., Zemel, A., & Safran, S. A. (2008). Do cells sense stress or strain? Measurement of cellular orientation can provide a clue. Biophysical Journal, 94, L29–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Ohno, M., Gibbons, G. H., Dzau, V. J., & Cooke, J. P. (1993). Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation, 88, 193–7.

    CAS  PubMed  Google Scholar 

  130. Dzau, V. J. (2002). Transcription factor decoy. Circulation Research, 90, 1234–6.

    CAS  PubMed  Google Scholar 

  131. Georgatos, S. D. (1994). Towards an understanding of nuclear morphogenesis. Journal of Cellular Biochemistry, 55, 69–76.

    CAS  PubMed  Google Scholar 

  132. Zlatanova, J., & Leuba, S. H. (2002). Stretching and imaging single DNA molecules and chromatin. Journal of Muscle Research and Cell Motility, 23, 377–95.

    PubMed  Google Scholar 

  133. Marko, J. F., & Poirier, M. G. (2003). Micromechanics of chromatin and chromosomes. Biochemistry and Cell Biology, 81, 209–20.

    CAS  PubMed  Google Scholar 

  134. Trinkle-Mulcahy, L., & Lamond, A. I. (2007). Toward a high-resolution view of nuclear dynamics. Science, 318, 1402–7.

    CAS  PubMed  Google Scholar 

  135. Knudsen, H. L., & Frangos, J. A. (1997). Role of cytoskeleton in shear stress-induced endothelial nitric oxide production. American Journal of Physiology Heart and Circulatory Physiology, 273, H347–55.

    CAS  Google Scholar 

  136. Visa, N. (2005). Actin in transcription. EMBO Reports, 6, 218–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Bettinger, B. T., Gilbert, D. M., & Amberg, D. C. (2004). Actin up in the nucleus. Nature Reviews Molecular Cell Biology, 5, 410–5.

    CAS  PubMed  Google Scholar 

  138. Olave, I. A., Reck-Peterson, S. L., & Crabtree, G. R. (2002). Nuclear actin and actin-related proteins in chromatin remodeling. Annual Review of Biochemistry, 71, 755–81.

    CAS  PubMed  Google Scholar 

  139. Jaalouk, D. E., & Lammerding, J. (2009). Mechanotransduction gone awry. Nature Reviews Molecular Cell Biology, 10, 63–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Helmke, B. P. (2005). Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology, 20, 43–53.

    CAS  PubMed  Google Scholar 

  141. Nauli, S. M., Kawanabe, Y., Kaminski, J. J., Pearce, W. J., Ingber, D. E., & Zhou, J. (2008). Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation, 117, 1161–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Boo, Y. C., & Jo, H. (2003). Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. American Journal of Physiology Cell Physiology, 285, C499–508.

    CAS  PubMed  Google Scholar 

  143. Bellin, R. M., Kubicek, J. D., Frigault, M. J., et al. (2009). Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proceedings of the National Academy of Sciences, 106, 22102–7.

    CAS  Google Scholar 

  144. Li, C., Hu, Y., Mayr, M., & Xu, Q. (1999). Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. Journal of Biological Chemistry, 274, 25273–80.

    CAS  PubMed  Google Scholar 

  145. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369, 156–60.

    CAS  PubMed  Google Scholar 

  146. Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. Journal of Biological Chemistry, 268, 14553–6.

    CAS  PubMed  Google Scholar 

  147. Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7, 211–24.

    CAS  PubMed  Google Scholar 

  148. Tzima, E., Irani-Tehrani, M., Kiosses, W. B., et al. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437(7057), 426–31.

    CAS  PubMed  Google Scholar 

  149. Faust, U., Hampe, N., Rubner, W., et al. (2011). Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS ONE, 6(12), e28963.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. De, R., Zemel, A., & Safran, S. A. (2007). Dynamics of cell orientation. Nature Physics, 3, 655–9.

    CAS  Google Scholar 

  151. Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan.

    Google Scholar 

  152. Mirotsou, M., Dzau, V. J., Pratt, R. E., & Weinberg, E. O. (2006). Physiological genomics of cardiac disease: quantitative relationships between gene expression and left ventricular hypertrophy. Physiological Genomics, 27, 86–94.

    CAS  PubMed  Google Scholar 

  153. Hirschy, A., Schatzmann, F., Ehler, E., & Perriard, J. C. (2006). Establishment of cardiac cytoarchitecture in the developing mouse heart. Developmental Biology, 289, 430–41.

    CAS  PubMed  Google Scholar 

  154. Creemers, E. E., & Pinto, Y. M. (2011). Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research, 89, 265–72.

    CAS  PubMed  Google Scholar 

  155. Pasipoularides, A. D., Shu, M., Shah, A., & Glower, D. D. (2002). Right ventricular diastolic relaxation in conscious dog models of pressure overload, volume overload and ischemia. Journal of Thoracic and Cardiovascular Surgery, 124, 964–72.

    PubMed  Google Scholar 

  156. Pasipoularides, A. D., Shu, M., Shah, A., Silvestry, S., & Glower, D. D. (2002). Right ventricular diastolic function in canine models of pressure overload, volume overload and ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2140–50.

    CAS  PubMed  Google Scholar 

  157. Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress in Cardiovascular Diseases, 32, 291–318.

    CAS  PubMed  Google Scholar 

  158. Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, J. P. (1986). Muscle relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.

    CAS  PubMed  Google Scholar 

  159. Gelpi, R. J., Pasipoularides, A., Lader, A. S., et al. (1991). Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circulation Research, 68, 555–67.

    CAS  PubMed  Google Scholar 

  160. Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceedings, 39, 156–61.

    CAS  PubMed  Google Scholar 

  161. Colombelli, J., Besser, A., Kress, H., et al. (2009). Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. Journal of Cell Science, 122, 1665–79.

    CAS  PubMed  Google Scholar 

  162. Wille, J. J., Elson, E. L., & Okamoto, R. J. (2006). Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch. Annals of Biomedical Engineering, 34, 1678–90.

    PubMed Central  PubMed  Google Scholar 

  163. Balestrini, J. L., & Billiar, K. L. (2006). Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. Journal of Biomechanics, 39, 2983–90.

    PubMed  Google Scholar 

  164. Hirata, H., Sokabe, M., & Lim, C. T. (2014). Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Progress in Molecular Biology and Translational Science, 126, 135–54.

    PubMed  Google Scholar 

  165. Grashoff, C., Hoffman, B. D., Brenner, M. D., et al. (2010). Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466, 263–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Riveline, D., Zamir, E., Balaban, N. Q., et al. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. Journal of Cell Biology, 153, 1175–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Galbraith, C. G., Yamada, K. M., & Sheetz, M. P. (2002). The relationship between force and focal complex development. Journal of Cell Biology, 159, 695–705.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Kuo, J. C. (2014). Focal adhesions function as a mechanosensor. Progress in Molecular Biology and Translational Science, 126, 55–73.

    PubMed  Google Scholar 

  169. Haase, K., Al-Rekabi, Z., & Pelling, A. E. (2014). Mechanical cues direct focal adhesion dynamics. Progress in Molecular Biology and Translational Science, 126, 103–34.

    PubMed  Google Scholar 

  170. Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., & Tarone, G. (2006). Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovascular Research, 70, 422–33.

    CAS  PubMed  Google Scholar 

  171. Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology Heart and Circulatory Physiology, 284, H1064–72.

    CAS  PubMed  Google Scholar 

  172. Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology Heart and Circulatory Physiology, 285, H1956–65.

    CAS  PubMed  Google Scholar 

  173. Pasipoularides, A. (2011). Analysis of vortex flow imaging in normal and dysfunctional RV’s. American Society of Echocardiography 22nd Annual Scientific Sessions, Montreal, 2011. EE02d – Flow Vortex Imaging; PROLibraries.com.

  174. Pasipoularides, A. (2013). Evaluation of right and left ventricular diastolic filling. Journal of Cardiovascular Translational Research, 6, 623–39.

    PubMed Central  PubMed  Google Scholar 

  175. Pasipoularides, A. (2008). Invited commentary: Functional Imaging (FI) combines imaging datasets and computational fluid dynamics to simulate cardiac flows. Journal of Applied Physiology, 105, 1015.

    PubMed  Google Scholar 

  176. Dodge, H. T., Hay, R. E., & Sandler, H. (1962). Pressure-volume characteristics of the diastolic left ventricle of man with heart disease. American Heart Journal, 64, 503–11.

    CAS  PubMed  Google Scholar 

  177. Ross, J., Jr., Sonnenblick, E. H., Taylor, R. R., & Covell, J. W. (1971). Diastolic geometry and sarcomere length in the chronically dilated canine left ventricle. Circulation Research, 28, 49–61.

    PubMed  Google Scholar 

  178. Paulus, W. J., Grossman, W., Serizawa, T., Bourdillon, P. D., Pasipoularides, A., & Mirsky, I. (1985). Different effects of two types of ischemia on myocardial systolic and diastolic function. American Journal of Physiology Heart and Circulatory Physiology, 248, H719–28.

    CAS  Google Scholar 

  179. Glower, D. D., Schaper, J., Kabas, J. S., et al. (1987). Relation between reversal of diastolic creep and recovery of systolic function after ischemic myocardial injury in conscious dogs. Circulation Research, 60, 850–60.

    CAS  PubMed  Google Scholar 

  180. Komamura, K., Shannon, R. P., Pasipoularides, A., et al. (1992). Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. Journal of Clinical Investigation, 89, 1825–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179–83.

    CAS  PubMed  Google Scholar 

  182. Low, B. C., Pan, C. Q., Shivashankar, C. V., Bershadsky, A., Sudol, M., & Sheetz, M. (2014). YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Letters, 588, 2663–70.

    CAS  PubMed  Google Scholar 

  183. Reddy, P., Deguchi, M., Cheng, Y., & Hsueh, A. J. W. (2013). Actin Cytoskeleton Regulates Hippo Signaling. PLoS ONE, 8(9), e73763. doi:10.1371/journal.pone.0073763.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Hong, W., & Guan, K. L. (2012). The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Seminars in Cell and Developmental Biology, 23, 785–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Pan, D. (2010). The hippo signaling pathway in development and cancer. Developmental Cell, 19, 491–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Li, Z., Zhao, B., Wang, P., et al. (2010). Structural insights into the YAP and TEAD complex. Genes and Development, 24, 235–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Heallen, T., Zhang, M., Wang, J., et al. (2011). Hippo Pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 332, 458–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Soonpaa, M. H., & Field, L. J. (1998). Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation Research, 83, 15–26.

    CAS  PubMed  Google Scholar 

  189. Hall, J. L., & Terzic, A. (2011). Heart failure transcriptome: when discoveries change practice? Circulation Cardiovascular Genetics, 4, 469–71.

    CAS  PubMed  Google Scholar 

  190. Stastna, M., Abraham, M. R., & Van Eyk, J. E. (2009). Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Letters, 583, 1800–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Bergmann, O., Bhardwaj, R. D., Bernard, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Pagliari, S., Vilela-Silva, A. C., Forte, G., et al. (2011). Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. Advanced Materials, 23, 514–8.

    CAS  PubMed  Google Scholar 

  193. van der Bogt, K. E., Sheikh, A. Y., Schrepfer, S., et al. (2008). Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation, 118, S121–9.

    PubMed Central  PubMed  Google Scholar 

  194. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–5.

    CAS  PubMed  Google Scholar 

  195. Varelas, X., Miller, B. W., Sopko, R., et al. (2010). The Hippo pathway regulates Wnt/beta-catenin signaling. Developmental Cell, 18, 579–91.

    CAS  PubMed  Google Scholar 

  196. Zhang, J., & Friedman, M. H. (2012). Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude. American Journal of Physiology. Heart and Circulatory Physiology, 302, H983–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Li, Y. S., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics, 38, 1949–71.

    PubMed  Google Scholar 

  198. Garcia-Cardena, G., Comander, J., Anderson, K. R., Blackman, B. R., & Gimbrone, M. A., Jr. (2001). Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proceedings of the National Academy of Sciences, 98, 4478–85.

    CAS  Google Scholar 

  199. Silberman, M., Barac, Y. D., Yahav, H., et al. (2009). Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis. Angiogenesis, 12, 231–42.

    CAS  PubMed  Google Scholar 

  200. Lockhart, D. J., & Winzeler, E. A. (2000). Genomics, gene expression and DNA arrays. Nature, 405, 827–36.

    CAS  PubMed  Google Scholar 

  201. Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, 837–46.

    CAS  PubMed  Google Scholar 

  202. Barnes, J., Pat, B., Chen, Y. W., et al. (2014). Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Therapeutic Advances in Cardiovascular Disease, 8, 97–118.

    CAS  PubMed  Google Scholar 

  203. Nygård, S., Reitan, T., Clancy, T., et al. (2014). Identifying pathogenic processes by integrating microarray data with prior knowledge. BMC Bioinformatics, 15, 115. doi:10.1186/1471-2105-15-115.

    PubMed Central  PubMed  Google Scholar 

  204. Rowell, J., Koitabashi, N., Kass, D. A., & Barth, A. S. (2014). Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways. Physiological Genomics, 46, 779–87.

    CAS  PubMed  Google Scholar 

  205. Nattel, S., Frelin, Y., Gaborit, N., Louault, C., & Demolombe, S. (2010). Ion-channel mRNA-expression profiling: Insights into cardiac remodeling and arrhythmic substrates. Journal of Molecular and Cellular Cardiology, 48, 96–105.

    CAS  PubMed  Google Scholar 

  206. Horn, S., Lueking, A., Murphy, D., et al. (2006). Profiling humoral autoimmune repertoire of dilated cardiomyopathy (DCM) patients and development of a disease-associated protein chip. Proteomics, 6, 605–13.

    CAS  PubMed  Google Scholar 

  207. Anisimov, S. V. (2008). Serial Analysis of Gene Expression (SAGE): 13 years of application in research. Current Pharmaceutical Biotechnology, 9, 338–50.

    CAS  PubMed  Google Scholar 

  208. Tarasov, K. V., Brugh, S. A., Tarasova, Y. S., & Boheler, K. R. (2007). Serial analysis of gene expression (SAGE): a useful tool to analyze the cardiac transcriptome. Methods in Molecular Biology, 366, 41–59.

    CAS  PubMed  Google Scholar 

  209. Patino, W. D., Mian, O. Y., & Hwang, P. M. (2002). Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circulation Research, 91, 565–9.

    CAS  PubMed  Google Scholar 

  210. Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270, 484–7.

    CAS  PubMed  Google Scholar 

  211. Liew, C. C., & Dzau, V. J. (2004). Molecular genetics and genomics of heart failure. Nature Reviews Genetics, 5, 811–25.

    CAS  PubMed  Google Scholar 

  212. Haqqani, A. S., Kelly, J. F., & Stanimirovic, D. B. (2008). Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods in Molecular Biology, 439, 241–56.

    CAS  PubMed  Google Scholar 

  213. Hall, J. L., Grindle, S., Han, X., et al. (2004). Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiological Genomics, 17, 283–91.

    CAS  PubMed  Google Scholar 

  214. Hall, J. L., Birks, E. J., Grindle, S., et al. (2007). Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. European Heart Journal, 28, 613–27.

    CAS  PubMed  Google Scholar 

  215. Metzker, M. L. (2010). Sequencing technologies–the next generation. Nature Reviews Genetics, 11, 31–46.

    CAS  PubMed  Google Scholar 

  216. Anandhakumar, C., Kizaki, S., Bando, T., Pandian, G. N., & Sugiyama, H. (2015). Advancing small-molecule-based chemical biology with next-generation sequencing technologies. Chembiochem, 16, 20–38.

    CAS  PubMed  Google Scholar 

  217. Li, R., Zhu, H., Ruan, J., et al. (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20, 265–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Li, B., Fillmore, N., Bai, Y., et al. (2014). Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biology, 15, 553. doi:10.1186/s13059-014-0553-5.

    PubMed Central  PubMed  Google Scholar 

  219. Gut, I. G. (2013). New sequencing technologies. Clinical and Translational Oncology, 15, 879–81.

    CAS  PubMed  Google Scholar 

  220. Rizzo, J. M., & Buck, M. J. (2012). Key principles and clinical applications of "next-generation" DNA sequencing. Cancer Prevention Research (Philadelphia, Pa), 5, 887–900.

    CAS  Google Scholar 

  221. Marian, A. J. (2012). Challenges in medical applications of whole exome/genome sequencing discoveries. Trends in Cardiovascular Medicine, 22, 219–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Barbato, E., Lara-Pezzi, E., Stolen, C., et al. (2014). Advances in induced pluripotent stem cells, genomics, biomarkers, and antiplatelet therapy highlights of the year in JCTR 2013. Journal of Cardiovascular Translational Research, 7, 518–25.

    PubMed  Google Scholar 

  223. Mitchell, A., Guan, W., Staggs, R., et al. (2013). Identification of differentially expressed transcripts and pathways in blood one week and six months following implant of left ventricular assist devices. PloS One, 8(10), e77951. doi:10.1371/journal.pone.0077951.

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Maier, T., Guell, M., & Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Letters, 583, 3966–73.

    CAS  PubMed  Google Scholar 

  225. Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13, 227–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Schwanhausser, B., Busse, D., Li, N., Dittmar, G., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–42.

    PubMed  Google Scholar 

  227. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Ferrai, C., de Castro, I. J., Lavitas, L., Chotalia, M., & Pombo, A. (2010). Gene positioning. Cold Spring Harbor Perspectives in Biology, 2, a000588. doi:10.1101/cshperspect.a000588.

    PubMed Central  PubMed  Google Scholar 

  229. Wong, I. Y., Bhatia, S. N., & Toner, M. (2013). Nanotechnology: emerging tools for biology and medicine. Genes and Development, 27, 2397–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Maher, B. (2012). ENCODE: The human encyclopaedia. Nature, 489, 46–8.

    PubMed  Google Scholar 

  231. The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.

Download references

Sources of Funding

Research support, for work from my Laboratory surveyed here, was provided by: National Heart, Lung, and Blood Institute, Grant R01 NIH 50446; National Science Foundation, Grant CDR 8622201; and North Carolina Supercomputing Center and Cray Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ares Pasipoularides.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Glossary

Compression (compressional stress)

The stress that squeezes something; the opposite of tension. The “pushing” stress component that acts perpendicular to a surface; compression in one (axial) direction induces tension in the other two (lateral) directions.

Creep

The deformation (stretch) of a material under constant load over time; myocardial creep entails extracellular matrix (ECM) and cardiomyocyte elongation, myofiber slippage, and other histoarchitectonic changes.

Cytoskeleton (CSK)

The fibrous proteins within a cell that provide tensegrity type structural support to the cell and are involved in mechanotransduction. The cytoskeleton provides physical, high-speed, linkage between the cell membrane and putative intracellular stress-sensing components, including the nucleus, which respond to mechanical cues through multiple pathways.

Epigenetics

(Gk. for “above/on top of" genetics) Refers to external modifications to DNA and its associated histone proteins that turn genes "on" or "off," without altering the DNA base sequence.

Epigenome

The complete set of epigenetic modifications (e.g., DNA methylation, histone acetylation, and chromatin remodeling) on the genome and allied histone proteins of a cell, tissue or organ.

Extracellular matrix (ECM)

The dynamic macromolecular complex synthesized primarily by fibroblasts, which assembles into a network that surrounds cells. It not only provides essential physical scaffolding, but also initiates crucial biomechanical and biochemical cues required for tissue function and adaptations.

Focal adhesion kinase (FAK)

Cytoplasmic enzyme that plays a major role in integrin-mediated signaling cascades. The size of the signal cascade can increase rapidly, allowing for a large response, to small initiating mechanical cues, such as diastolic vortical shear and “squeeze” forces.

Gene expression

The phenomenon whereby a gene is transcribed into an RNA molecule.

Genome (human)

All the DNA—in humans, encompassing about 3 billion DNA base pairs—coiled and recoiled around aggregated proteins (histones) in 23 distinct (single or haploid set) chromosomes within the nucleus, allowing control of the accessibility of DNA information. Mitochondrial DNA, distinct from nuclear DNA, is a small genome contained in all mitochondria.

Genotype

The inherited genetic makeup of a cell.

Hippo pathway

Signaling pathway that plays a restraining role in the control of organ growth and size via a cascade of protein kinases, which phosphorylates TAZ and YAP, causing them to be retained in the cytoplasm; in the nucleus, TAZ and YAP act as transcriptional regulators. In the developing heart, Hippo is a negative regulator of the pro-growth Wnt signaling pathway.

Histoarchitectonics

(Gk. ιστός = "tissue" + αρχιτεκτονική = "architecture") The adjustable cellular and non-cellular composition, changing intricate form patterns, and dynamic geometric arrangements of organs and tissues; investigated using various modalities, recognizing that form, structure, and function are inseparable.

KASH

One of two protein families (KASH/SUN domains) that are jointly responsible for holding together the two nuclear envelope membranes, and for attaching them to the cytoskeleton and the nucleoskeleton. A branched F-actin cytoskeleton permeating the cytoplasm is linked to the nuclear envelope via the KASH/SUN integral membrane protein complexes and to the cell membrane via membrane-embedded integrin proteins.

LINC (Linker of Nucleoskeleton and Cytoskeleton)

Complexes built from members of two protein families, SUN and KASH. SUN domain proteins are integral to the inner nuclear membrane, whereas KASH domain proteins reside in the outer nuclear membrane. SUN and KASH proteins directly bind each other, thereby forming a bridge across the nuclear envelope, which is essential for enhanced CSK/NSK force-coupling and for physical and functional linkage between the cytoplasm and nucleoplasm.

Mechanotransduction

How mechanical forces/cues are sensed and transduced into biochemical signals affecting cellular, tissue, and organ function and morphomechanical adaptations; involved are stretch-activated channels (SAC), cell adhesion receptors, extracellular matrix, cytoskeletal, and nucleoskeletal molecules, etc.

Next Generation Sequencing (NGS)

High-throughput DNA and RNA (coding and non-coding) sequencing methods that massively parallelize the sequencing process, producing thousands or millions of sequences at once; they can explore gene expression changes, epigenomic pattern, etc., on a genome-wide scale and with single-base precision.

Nuclear envelope

A double lipid bilayer membrane with multiple pores that surrounds the nucleus. The pores regulate the passage of macromolecules like proteins and RNA; since information is carried by the macromolecules, the envelope exerts some control over its flow.

Nucleoskeleton (NSK)

The fibrillar substructure of the nuclear matrix, primarily composed of intermediate filaments that consist of lamin proteins; it supports signaling, chromatin remodeling, DNA replication, and mRNA synthesis, processing and transport.

Paralogs

(Gk. para: “in parallel”) Genes [proteins] related by duplication within a genome and passed on side-by-side.

Phenotype

The observable morphomechanical characteristics of a cell, tissue, organ, or organism, which are based on the genotype and environmental factors.

Phenotypic plasticity

The capacity of a cell, tissue, organ, or organism, to change its morphomechanical state in response to “environmental” stimuli.

Remodeling

The (mal)adaptive change of tissue and organ morphology due to external or internal stimuli.

Sarcolemma

(sarco-, Gk.: pertaining to flesh; + lemma, Gk.: sheath) myocyte cell membrane.

Shear stress

A stress state where the stress is acting parallel to a given surface, as opposed to a normal (compression or tension) stress where the stress is vertical to the surface. When viscous fluids (e.g., blood) flow along surfaces, they generate shear stresses "pulling" tangentially on them, causing angular distortions.

Strain

A description of deformation (extension, shortening, volume change, or angular distortion) in terms of relative displacement of particles in a body under stress, which excludes rigid-body motions.

Stress

The force per unit area acting upon an object or material tending to cause it to change shape or volume.

SUN

One of two protein families (KASH/SUN domains) that are jointly responsible for holding together the two nuclear envelope membranes and for attaching them to the cytoskeleton and the nucleoskeleton. A branched F-actin cytoskeleton permeating the cytoplasm is linked to the nuclear envelope via the KASH/SUN integral membrane protein complexes and to the cell membrane via membrane-embedded integrin proteins.

TAZ (WW domain containing transcription regulator 1, or WWTR1)

Transcriptional coactivator and downstream effector of the Hippo pathway. Similarly to its paralog YAP, phosphorylated TAZ is sequestered in the cytoplasm and degraded; when dephosphorylated, TAZ/YAP translocates to the nucleus and interacts with other transcription factors to drive transcription, inducing gene expression.

Tensegrity structures

Arrangements consisting of components in tension and compression in stable equilibrium. The application of forces to a tensegrity structure will deform it into a slightly different shape in a way that supports the applied forces. Buckminster Fuller coined the word “tensegrity” from the words “tension” and “integrity.”

Tension (tensile stress)

The stress state leading to elongation in the tensile direction, while the volume stays constant; accordingly, the two other directions must decrease in size; i.e., a tension in one (axial) direction induces a compression in the other two (lateral) directions, and conversely. Tension is the opposite of compression.

Torque

The tendency of a force to rotate an object about a pivot. A torque can be thought of as a twist to an object that tends to produce rotation; e.g., pushing or pulling the handle of a wrench coupled to a nut or bolt produces a torque (turning force).

Traction (tractive force)

The force generating tangential motion of a surface, through viscous shear or dry friction exerted on the surface.

Transdifferentiation

Conversion of one differentiated cell type into another. It is a kind of transformation called metaplasia (Gk. for “change in form”).

Vortex

This is the rotating motion of a multitude of fluid particles around a common center; the paths of the individual particles do not have to be circular, but may also be asymmetric. The RV/LV diastolic filling vortex is a toroidal vortex, a torus-shaped or ring-shaped vortex, where blood spins around an imaginary axis line that forms a closed loop.

YAP (Yes-associated protein)

Transcriptional co-activator and downstream effector of the Hippo pathway. Similarly to its paralog TAZ, when phosphorylated YAP is isolated in the cytoplasm and degraded; when dephosphorylated, YAP/TAZ translocates to the nucleus and interacts with various transcription factors to induce gene expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasipoularides, A. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. J. of Cardiovasc. Trans. Res. 8, 293–318 (2015). https://doi.org/10.1007/s12265-015-9630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9630-8

Keywords

Navigation