Skip to main content

Advertisement

Log in

Application of Adipose-Derived Stem Cells in Heart Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Therapy with mesenchymal stem cells is one of the promising tools to improve outcomes after myocardial infarction. Adipose-derived stem cells (ASCs) are an ideal source of mesenchymal stem cells due to their abundance and ease of preparation. Studies in animal models of myocardial infarction have demonstrated the ability of injected ASCs to engraft and differentiate into cardiomyocytes and vasculature cells. ASCs secrete a wide array of angiogenic and anti-apoptotic paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1. ASCs are capable of enhancing heart function, reducing myocardial infarction, promoting vascularization, and reversing remodeling in the ischemically injured hearts. Furthermore, several ongoing clinical trials using ASCs are producing promising results for heart diseases. This article reviews the isolation, differentiation, immunoregulatory properties, mechanisms of action, animal models, and ongoing clinical trials of ASCs for cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASCs:

Adipose-derived stem cells

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

BM:

Bone marrow

SVF:

Stromal vascular fraction

VEGF:

Vascular endothelial growth factor

COX-2:

Cyclooxygenase-2

PGE-2:

Prostaglandin E2

HGF:

Hepatocyte growth factor

Tregs:

Regulatory T cells

GVHD:

Graft-versus-host disease

IGF-I:

Insulin-like growth factor 1

eNOS:

Endothelial nitric oxide synthase

ADRCs:

Adipose-derived stem and regenerative cells

References

  1. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., & Anversa, P. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    PubMed  CAS  Google Scholar 

  2. Williams, A. R., Hatzistergos, K. E., Addicott, B., McCall, F., Carvalho, D., Suncion, V., Morales, A. R., Da Silva, J., Sussman, M. A., Heldman, A. W., & Hare, J. M. (2013). Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation, 127(2), 213–223. doi:10.1161/CIRCULATIONAHA.112.131110.

    PubMed  PubMed Central  Google Scholar 

  3. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., Feigenbaum, G. S., Rodriguez, J. E., Valdes, D., Pattany, P. M., Zambrano, J. P., Hu, Q., McNiece, I., Heldman, A. W., & Hare, J. M. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027. doi:10.1073/pnas.0903201106.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Jr., Reisman, M. A., Schaer, G. L., & Sherman, W. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286. doi:10.1016/j.jacc.2009.06.055.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., Mendizabal, A. M., Pattany, P. M., Lopera, G. A., Fishman, J., Zambrano, J. P., Heldman, A. W., & Hare, J. M. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108(7), 792–796. doi:10.1161/CIRCRESAHA.111.242610.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., Mushtaq, M., Williams, A. R., Suncion, V. Y., McNiece, I. K., Ghersin, E., Soto, V., Lopera, G., Miki, R., Willens, H., Hendel, R., Mitrani, R., Pattany, P., Feigenbaum, G., Oskouei, B., Byrnes, J., Lowery, M. H., Sierra, J., Pujol, M. V., Delgado, C., Gonzalez, P. J., Rodriguez, J. E., Bagno, L. L., Rouy, D., Altman, P., Foo, C. W., da Silva, J., Anderson, E., Schwarz, R., Mendizabal, A., & Hare, J. M. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA : The Journal of the American Medical Association, 311(1), 62–73. doi:10.1001/jama.2013.282909.

    CAS  Google Scholar 

  7. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228. doi:10.1089/107632701300062859.

    PubMed  CAS  Google Scholar 

  8. In ‘t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M., Claas, F. H., Fibbe, W. E., & Kanhai, H. H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345. doi:10.1634/stemcells.2004-0058.

    Google Scholar 

  9. Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109(1), 235–242.

    PubMed  CAS  Google Scholar 

  10. Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599. doi:10.1634/stemcells.2007-0439.

    PubMed  PubMed Central  Google Scholar 

  11. Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., DenBesten, P., Robey, P. G., & Shi, S. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.

    PubMed  CAS  Google Scholar 

  12. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260. doi:10.1161/01.RES.0000265074.83288.09.

    PubMed  CAS  Google Scholar 

  13. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295. doi:10.1091/mbc.E02-02-0105.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Przybyt, E., & Harmsen, M. C. (2013). Mesenchymal stem cells: promising for myocardial regeneration? Current Stem Cell Research & Therapy, 8(4), 270–277.

    CAS  Google Scholar 

  15. Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International, 2012, 812693. doi:10.1155/2012/812693.

    PubMed  PubMed Central  Google Scholar 

  16. Pikula, M., Marek-Trzonkowska, N., Wardowska, A., Renkielska, A., & Trzonkowski, P. (2013). Adipose tissue-derived stem cells in clinical applications. Expert Opinion on Biological Therapy, 13(10), 1357–1370. doi:10.1517/14712598.2013.823153.

    PubMed  CAS  Google Scholar 

  17. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 9(5), 641–650. doi:10.1002/jor.1100090504.

    CAS  Google Scholar 

  18. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403.

    PubMed  CAS  Google Scholar 

  19. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17(4), 331–340.

    PubMed  CAS  Google Scholar 

  20. Van, R. L., Bayliss, C. E., & Roncari, D. A. (1976). Cytological and enzymological characterization of adult human adipocyte precursors in culture. The Journal of Clinical Investigation, 58(3), 699–704. doi:10.1172/JCI108516.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648. doi:10.1016/j.jcyt.2013.02.006.

    PubMed  PubMed Central  Google Scholar 

  22. Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., Tallquist, M. D., & Graff, J. M. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322(5901), 583–586. doi:10.1126/science.1156232.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. doi:10.1080/14653240600855905.

    PubMed  CAS  Google Scholar 

  24. Mosna, F., Sensebe, L., & Krampera, M. (2010). Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells and Development, 19(10), 1449–1470. doi:10.1089/scd.2010.0140.

    PubMed  CAS  Google Scholar 

  25. Zheng, G., Huang, L., Tong, H., Shu, Q., Hu, Y., Ge, M., Deng, K., Zhang, L., Zou, B., Cheng, B., & Xu, J. (2014). Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respiratory Research, 15(1), 39. doi:10.1186/1465-9921-15-39.

    PubMed  PubMed Central  Google Scholar 

  26. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells and Development, 21(14), 2724–2752. doi:10.1089/scd.2011.0722.

    PubMed  CAS  Google Scholar 

  27. Onate, B., Vilahur, G., Ferrer-Lorente, R., Ybarra, J., Diez-Caballero, A., Ballesta-Lopez, C., Moscatiello, F., Herrero, J., & Badimon, L. (2012). The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26(10), 4327–4336. doi:10.1096/fj.12-207217.

    CAS  Google Scholar 

  28. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., Ritt, M. J., & van Milligen, F. J. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8(2), 166–177. doi:10.1080/14653240600621125.

    PubMed  CAS  Google Scholar 

  29. Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., Di Halvorsen, Y., Storms, R. W., Goh, B., Kilroy, G., Wu, X., & Gimble, J. M. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24(2), 376–385. doi:10.1634/stemcells.2005-0234.

    PubMed  Google Scholar 

  30. Jurgens, W. J., Oedayrajsingh-Varma, M. J., Helder, M. N., Zandiehdoulabi, B., Schouten, T. E., Kuik, D. J., Ritt, M. J., & van Milligen, F. J. (2008). Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and Tissue Research, 332(3), 415–426. doi:10.1007/s00441-007-0555-7.

    PubMed  PubMed Central  Google Scholar 

  31. Schipper, B. M., Marra, K. G., Zhang, W., Donnenberg, A. D., & Rubin, J. P. (2008). Regional anatomic and age effects on cell function of human adipose-derived stem cells. Annals of Plastic Surgery, 60(5), 538–544. doi:10.1097/SAP.0b013e3181723bbe.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Frazier, T. P., Gimble, J. M., Devay, J. W., Tucker, H. A., Chiu, E. S., & Rowan, B. G. (2013). Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biology, 14, 34. doi:10.1186/1471-2121-14-34.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Minteer, D., Marra, K. G., & Rubin, J. P. (2013). Adipose-derived mesenchymal stem cells: biology and potential applications. Advances in Biochemical Engineering/Biotechnology, 129, 59–71. doi:10.1007/10_2012_146.

    PubMed  CAS  Google Scholar 

  34. Rangappa, S., Fen, C., Lee, E. H., Bongso, A., & Sim, E. K. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of Thoracic Surgery, 75(3), 775–779.

    PubMed  Google Scholar 

  35. van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., Visser, F. C., & van Milligen, F. J. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 334(3), 457–467. doi:10.1007/s00441-008-0713-6.

    PubMed  Google Scholar 

  36. Park, E., & Patel, A. N. (2010). Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biology International, 34(10), 979–984. doi:10.1042/CBI20100124.

    PubMed  CAS  Google Scholar 

  37. Chang, W., Lim, S., Song, B. W., Lee, C. Y., Park, M. S., Chung, Y. A., Yoon, C., Lee, S. Y., Ham, O., Park, J. H., Choi, E., Maeng, L. S., & Hwang, K. C. (2012). Phorbol myristate acetate differentiates human adipose-derived mesenchymal stem cells into functional cardiogenic cells. Biochemical and Biophysical Research Communications, 424(4), 740–746. doi:10.1016/j.bbrc.2012.07.022.

    PubMed  CAS  Google Scholar 

  38. Gaustad, K. G., Boquest, A. C., Anderson, B. E., Gerdes, A. M., & Collas, P. (2004). Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 314(2), 420–427.

    PubMed  CAS  Google Scholar 

  39. Peran, M., Marchal, J. A., Lopez, E., Jimenez-Navarro, M., Boulaiz, H., Rodriguez-Serrano, F., Carrillo, E., Sanchez-Espin, G., de Teresa, E., Tosh, D., & Aranega, A. (2010). Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy, 12(3), 332–337. doi:10.3109/14653240903548202.

    PubMed  CAS  Google Scholar 

  40. Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., Penicaud, L., & Casteilla, L. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94(2), 223–229. doi:10.1161/01.RES.0000109792.43271.47.

    PubMed  CAS  Google Scholar 

  41. Song, Y. H., Gehmert, S., Sadat, S., Pinkernell, K., Bai, X., Matthias, N., & Alt, E. (2007). VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 354(4), 999–1003. doi:10.1016/j.bbrc.2007.01.095.

    PubMed  CAS  Google Scholar 

  42. Lee, W. C., Sepulveda, J. L., Rubin, J. P., & Marra, K. G. (2009). Cardiomyogenic differentiation potential of human adipose precursor cells. International Journal of Cardiology, 133(3), 399–401. doi:10.1016/j.ijcard.2007.11.068.

    PubMed  Google Scholar 

  43. Zhang, F. B., Li, L., Fang, B., Zhu, D. L., Yang, H. T., & Gao, P. J. (2005). Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochemical and Biophysical Research Communications, 336(3), 784–792. doi:10.1016/j.bbrc.2005.08.177.

    PubMed  CAS  Google Scholar 

  44. Yanez, R., Lamana, M. L., Garcia-Castro, J., Colmenero, I., Ramirez, M., & Bueren, J. A. (2006). Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells, 24(11), 2582–2591. doi:10.1634/stemcells.2006-0228.

    PubMed  CAS  Google Scholar 

  45. Aust, L., Devlin, B., Foster, S. J., Halvorsen, Y. D., Hicok, K., du Laney, T., Sen, A., Willingmyre, G. D., & Gimble, J. M. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6(1), 7–14. doi:10.1080/14653240310004539.

    PubMed  CAS  Google Scholar 

  46. Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., Gini, B., Bach, S. D., Martinello, M., Bifari, F., Galie, M., Turano, E., Budui, S., Sbarbati, A., Krampera, M., & Bonetti, B. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells, 27(10), 2624–2635. doi:10.1002/stem.194.

    PubMed  CAS  Google Scholar 

  47. Saka, Y., Furuhashi, K., Katsuno, T., Kim, H., Ozaki, T., Iwasaki, K., Haneda, M., Sato, W., Tsuboi, N., Ito, Y., Matsuo, S., Kobayashi, T., & Maruyama, S. (2011). Adipose-derived stromal cells cultured in a low-serum medium, but not bone marrow-derived stromal cells, impede xenoantibody production. Xenotransplantation, 18(3), 196–208. doi:10.1111/j.1399-3089.2011.00640.x.

    PubMed  Google Scholar 

  48. DelaRosa, O., Sanchez-Correa, B., Morgado, S., Ramirez, C., del Rio, B., Menta, R., Lombardo, E., Tarazona, R., & Casado, J. G. (2012). Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells and Development, 21(8), 1333–1343. doi:10.1089/scd.2011.0139.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Gonzalez-Rey, E., Anderson, P., Gonzalez, M. A., Rico, L., Buscher, D., & Delgado, M. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 58(7), 929–939. doi:10.1136/gut.2008.168534.

    PubMed  CAS  Google Scholar 

  50. Crop, M. J., Baan, C. C., Korevaar, S. S., Ijzermans, J. N., Pescatori, M., Stubbs, A. P., van Ijcken, W. F., Dahlke, M. H., Eggenhofer, E., Weimar, W., & Hoogduijn, M. J. (2010). Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clinical and Experimental Immunology, 162(3), 474–486. doi:10.1111/j.1365-2249.2010.04256.x.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Buscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136(3), 978–989. doi:10.1053/j.gastro.2008.11.041.

    PubMed  Google Scholar 

  52. Ono, K., Matsumori, A., Shioi, T., Furukawa, Y., & Sasayama, S. (1998). Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation, 98(2), 149–156.

    PubMed  CAS  Google Scholar 

  53. Kilic, T., Ural, D., Ural, E., Yumuk, Z., Agacdiken, A., Sahin, T., Kahraman, G., Kozdag, G., Vural, A., & Komsuoglu, B. (2006). Relation between proinflammatory to anti-inflammatory cytokine ratios and long-term prognosis in patients with non-ST elevation acute coronary syndrome. Heart, 92(8), 1041–1046. doi:10.1136/hrt.2005.080382.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Paul, A., Srivastava, S., Chen, G., Shum-Tim, D., & Prakash, S. (2013). Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. Cell Biochemistry and Biophysics, 67(2), 263–273. doi:10.1007/s12013-011-9323-0.

    PubMed  CAS  Google Scholar 

  55. Adutler-Lieber, S., Ben-Mordechai, T., Naftali-Shani, N., Asher, E., Loberman, D., Raanani, E., & Leor, J. (2013). Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. Journal of Cardiovascular Pharmacology and Therapeutics, 18(1), 78–86. doi:10.1177/1074248412453875.

    PubMed  CAS  Google Scholar 

  56. Wang, H., Shi, J., Wang, Y., Yin, Y., Wang, L., Liu, J., Liu, Z., Duan, C., Zhu, P., & Wang, C. (2014). Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials, 35(13), 3986–3998. doi:10.1016/j.biomaterials.2014.01.021.

    PubMed  CAS  Google Scholar 

  57. Rigol, M., Solanes, N., Roura, S., Roque, M., Novensa, L., Dantas, A. P., Martorell, J., Sitges, M., Ramirez, J., Bayes-Genis, A., & Heras, M. (2014). Allogeneic adipose stem cell therapy in acute myocardial infarction. European Journal of Clinical Investigation, 44(1), 83–92. doi:10.1111/eci.12195.

    PubMed  CAS  Google Scholar 

  58. Geng, Y. J. (2003). Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Annals of the New York Academy of Sciences, 1010, 687–697.

    PubMed  CAS  Google Scholar 

  59. Otto Beitnes, J., Oie, E., Shahdadfar, A., Karlsen, T., Muller, R. M., Aakhus, S., Reinholt, F. P., & Brinchmann, J. E. (2012). Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplantation, 21(8), 1697–1709. doi:10.3727/096368911X627462.

    PubMed  Google Scholar 

  60. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298. doi:10.1161/01.CIR.0000121425.42966.F1.

    PubMed  Google Scholar 

  61. Wang, L., Deng, J., Tian, W., Xiang, B., Yang, T., Li, G., Wang, J., Gruwel, M., Kashour, T., Rendell, J., Glogowski, M., Tomanek, B., Freed, D., Deslauriers, R., Arora, R. C., & Tian, G. (2009). Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(3), H1020–H1031. doi:10.1152/ajpheart.01082.2008.

    PubMed  CAS  Google Scholar 

  62. Tang, J. M., Wang, J. N., Zhang, L., Zheng, F., Yang, J. Y., Kong, X., Guo, L. Y., Chen, L., Huang, Y. Z., Wan, Y., & Chen, S. Y. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research, 91(3), 402–411. doi:10.1093/cvr/cvr053.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., & Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12(4), 459–465. doi:10.1038/nm1391.

    PubMed  CAS  Google Scholar 

  64. van Dijk, A., Naaijkens, B. A., Jurgens, W. J., Nalliah, K., Sairras, S., van der Pijl, R. J., Vo, K., Vonk, A. B., van Rossum, A. C., Paulus, W. J., van Milligen, F. J., & Niessen, H. W. (2011). Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application. Stem Cell Research, 7(3), 219–229. doi:10.1016/j.scr.2011.06.003.

    PubMed  Google Scholar 

  65. Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A., & Comoglio, P. M. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. The Journal of Cell Biology, 119(3), 629–641.

    PubMed  CAS  Google Scholar 

  66. Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106(12), 1511–1519. doi:10.1172/JCI10226.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., Matsuda, H., & Nakamura, T. (2005). Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. American Journal of Physiology. Heart and Circulatory Physiology, 288(5), H2131–H2139. doi:10.1152/ajpheart.01239.2003.

    PubMed  CAS  Google Scholar 

  68. Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., Schmitz, W., Dietz, R., & von Harsdorf, R. (2001). In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation, 104(17), 2088–2094.

    PubMed  CAS  Google Scholar 

  69. Funatsu, T., Sawa, Y., Ohtake, S., Takahashi, T., Matsumiya, G., Matsuura, N., Nakamura, T., & Matsuda, H. (2002). Therapeutic angiogenesis in the ischemic canine heart induced by myocardial injection of naked complementary DNA plasmid encoding hepatocyte growth factor. The Journal of Thoracic and Cardiovascular Surgery, 124(6), 1099–1105. doi:10.1067/mtc.2002.123809.

    PubMed  CAS  Google Scholar 

  70. Madonna, R., & De Caterina, R. (2010). Adipose tissue: a new source for cardiovascular repair. Journal of Cardiovascular Medicine, 11(2), 71–80. doi:10.2459/JCM.0b013e328330e9be.

    PubMed  Google Scholar 

  71. Bai, X., Yan, Y., Song, Y. H., Seidensticker, M., Rabinovich, B., Metzele, R., Bankson, J. A., Vykoukal, D., & Alt, E. (2010). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 31(4), 489–501. doi:10.1093/eurheartj/ehp568.

    PubMed  CAS  Google Scholar 

  72. Mazo, M., Cemborain, A., Gavira, J. J., Abizanda, G., Arana, M., Casado, M., Soriano, M., Hernandez, S., Moreno, C., Ecay, M., Albiasu, E., Belzunce, M., Orbe, J., Paramo, J. A., Merino, J., Penuelas, I., Verdugo, J. M., Pelacho, B., & Prosper, F. (2012). Adipose stromal vascular fraction improves cardiac function in chronic myocardial infarction through differentiation and paracrine activity. Cell Transplantation, 21(5), 1023–1037. doi:10.3727/096368911X623862.

    PubMed  Google Scholar 

  73. Leblanc, A. J., Touroo, J. S., Hoying, J. B., & Williams, S. K. (2012). Adipose stromal vascular fraction cell construct sustains coronary microvascular function after acute myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 302(4), H973–H982. doi:10.1152/ajpheart.00735.2011.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Premaratne, G. U., Ma, L. P., Fujita, M., Lin, X., Bollano, E., & Fu, M. (2011). Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. Journal of Cardiothoracic Surgery, 6, 43. doi:10.1186/1749-8090-6-43.

    PubMed  PubMed Central  Google Scholar 

  75. Schenke-Layland, K., Strem, B. M., Jordan, M. C., Deemedio, M. T., Hedrick, M. H., Roos, K. P., Fraser, J. K., & Maclellan, W. R. (2009). Adipose tissue-derived cells improve cardiac function following myocardial infarction. The Journal of Surgical Research, 153(2), 217–223. doi:10.1016/j.jss.2008.03.019.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Alt, E., Pinkernell, K., Scharlau, M., Coleman, M., Fotuhi, P., Nabzdyk, C., Matthias, N., Gehmert, S., & Song, Y. H. (2010). Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. International Journal of Cardiology, 144(1), 26–35. doi:10.1016/j.ijcard.2009.03.124.

    PubMed  Google Scholar 

  77. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N. (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications, 342(2), 662–670. doi:10.1016/j.bbrc.2006.01.181.

    PubMed  CAS  Google Scholar 

  78. Leobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., Calise, D., Arnaud, E., Andre, M., Puceat, M., Penicaud, L., Prosper, F., Planat-Benard, V., & Casteilla, L. (2009). Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83(4), 757–767. doi:10.1093/cvr/cvp167.

    PubMed  CAS  Google Scholar 

  79. Yu, L. H., Kim, M. H., Park, T. H., Cha, K. S., Kim, Y. D., Quan, M. L., Rho, M. S., Seo, S. Y., & Jung, J. S. (2010). Improvement of cardiac function and remodeling by transplanting adipose tissue-derived stromal cells into a mouse model of acute myocardial infarction. International Journal of Cardiology, 139(2), 166–172. doi:10.1016/j.ijcard.2008.10.024.

    PubMed  Google Scholar 

  80. Li, B., Zeng, Q., Wang, H., Shao, S., Mao, X., Zhang, F., Li, S., & Guo, Z. (2007). Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coronary Artery Disease, 18(3), 221–227. doi:10.1097/MCA.0b013e32801235da.

    PubMed  Google Scholar 

  81. Carvalho, J. L., Braga, V. B., Melo, M. B., Campos, A. C., Oliveira, M. S., Gomes, D. A., Ferreira, A. J., Santos, R. A., & Goes, A. M. (2013). Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 17(5), 617–625. doi:10.1111/jcmm.12036.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Rasmussen, J. G., Frobert, O., Holst-Hansen, C., Kastrup, J., Baandrup, U., Zachar, V., Fink, T., & Simonsen, U. (2014). Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model. Cell Transplantation, 23(2), 195–206. doi:10.3727/096368912X659871.

    PubMed  Google Scholar 

  83. Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., Le Jemtel, T. H., & Alt, E. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667–2677. doi:10.1093/eurheartj/ehm426.

    PubMed  Google Scholar 

  84. De Siena, R., Balducci, L., Blasi, A., Montanaro, M. G., Saldarelli, M., Saponaro, V., Martino, C., Logrieco, G., Soleti, A., Fiobellot, S., Madeddu, P., Rossi, G., Ribatti, D., Crovace, A., Cristini, S., Invernici, G., Parati, E. A., & Alessandri, G. (2010). Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism. Experimental Cell Research, 316(11), 1804–1815. doi:10.1016/j.yexcr.2010.02.009.

    PubMed  Google Scholar 

  85. Mazo, M., Hernandez, S., Gavira, J. J., Abizanda, G., Arana, M., Lopez-Martinez, T., Moreno, C., Merino, J., Martino-Rodriguez, A., Uixeira, A., Garcia de Jalon, J. A., Pastrana, J., Martinez-Caro, D., & Prosper, F. (2012). Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction. Cell Transplantation, 21(12), 2723–2733. doi:10.3727/096368912X638847.

    PubMed  Google Scholar 

  86. Hoke, N. N., Salloum, F. N., Kass, D. A., Das, A., & Kukreja, R. C. (2012). Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells, 30(2), 326–335. doi:10.1002/stem.789.

    PubMed  CAS  Google Scholar 

  87. Wang, W. E., Yang, D., Li, L., Wang, W., Peng, Y., Chen, C., Chen, P., Xia, X., Wang, H., Jiang, J., Liao, Q., Li, Y., Xie, G., Huang, H., Guo, Y., Ye, L., Duan, D. D., Chen, X., Houser, S. R., & Zeng, C. (2013). Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium. Circulation Research, 113(3), 288–300. doi:10.1161/CIRCRESAHA.113.300929.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Fischer, U. M., Harting, M. T., Jimenez, F., Monzon-Posadas, W. O., Xue, H., Savitz, S. I., Laine, G. A., & Cox, C. S., Jr. (2009). Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells and Development, 18(5), 683–692. doi:10.1089/scd.2008.0253.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Preda, M. B., Ronningen, T., Burlacu, A., Simionescu, M., Moskaug, J. O., & Valen, G. (2014). Remote transplantation of mesenchymal stem cells protects the heart against ischemia-reperfusion injury. Stem Cells. doi:10.1002/stem.1687.

    PubMed  Google Scholar 

  90. Hamdi, H., Planat-Benard, V., Bel, A., Neamatalla, H., Saccenti, L., Calderon, D., Bellamy, V., Bon, M., Perrier, M. C., Mandet, C., Bruneval, P., Casteilla, L., Hagege, A. A., Puceat, M., Agbulut, O., & Menasche, P. (2014). Long-term functional benefits of epicardial patches as cell carriers. Cell Transplantation, 23(1), 87–96. doi:10.3727/096368912X658836.

    PubMed  Google Scholar 

  91. Paul, A., Chen, G., Khan, A., Rao, V. T., Shum-Tim, D., & Prakash, S. (2012). Genipin-cross-linked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infarcted rat heart fibrosis and cardiac dysfunction. Cell Transplantation, 21(12), 2735–2751. doi:10.3727/096368912X637497.

    PubMed  Google Scholar 

  92. Zhang, Z., Li, S., Cui, M., Gao, X., Sun, D., Qin, X., Narsinh, K., Li, C., Jia, H., Li, C., Han, Y., Wang, H., & Cao, F. (2013). Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Research in Cardiology, 108(2), 333. doi:10.1007/s00395-013-0333-5.

    PubMed  Google Scholar 

  93. Berardi, G. R., Rebelatto, C. K., Tavares, H. F., Ingberman, M., Shigunov, P., Barchiki, F., Aguiar, A. M., Miyague, N. I., Francisco, J. C., Correa, A., Senegaglia, A. C., Suss, P. H., Moutinho, J. A., Sotomaior, V. S., Nakao, L. S., & Brofman, P. S. (2011). Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Experimental and Molecular Pathology, 90(2), 149–156. doi:10.1016/j.yexmp.2010.11.005.

    PubMed  CAS  Google Scholar 

  94. Chang, J. C., Lee, P. C., Lin, Y. C., Lee, K. W., & Hsu, S. H. (2011). Primary adipose-derived stem cells enriched by growth factor treatment improves cell adaptability toward cardiovascular differentiation in a rodent model of acute myocardial infarction. Journal of Stem Cells, 6(1), 21–37.

    PubMed  Google Scholar 

  95. Kim, S. W., Lee, D. W., Yu, L. H., Zhang, H. Z., Kim, C. E., Kim, J. M., Park, T. H., Cha, K. S., Seo, S. Y., Roh, M. S., Lee, K. C., Jung, J. S., & Kim, M. H. (2012). Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovascular Research, 95(4), 495–506. doi:10.1093/cvr/cvs224.

    PubMed  CAS  Google Scholar 

  96. Paul, A., Nayan, M., Khan, A. A., Shum-Tim, D., & Prakash, S. (2012). Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. International Journal of Nanomedicine, 7, 663–682. doi:10.2147/IJN.S26882.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Shi, C. Z., Zhang, X. P., Lv, Z. W., Zhang, H. L., Xu, J. Z., Yin, Z. F., Yan, Y. Q., & Wang, C. Q. (2012). Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model. International Journal of Cardiology, 154(1), 2–8. doi:10.1016/j.ijcard.2011.05.078.

    PubMed  Google Scholar 

  98. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    PubMed  CAS  Google Scholar 

  99. Fraser, J. K., Wulur, I., Alfonso, Z., & Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24(4), 150–154. doi:10.1016/j.tibtech.2006.01.010.

    PubMed  CAS  Google Scholar 

  100. Ivanova-Todorova, E., Bochev, I., Mourdjeva, M., Dimitrov, R., Bukarev, D., Kyurkchiev, S., Tivchev, P., Altunkova, I., & Kyurkchiev, D. S. (2009). Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters, 126(1–2), 37–42. doi:10.1016/j.imlet.2009.07.010.

    PubMed  CAS  Google Scholar 

  101. Kim, Y., Kim, H., Cho, H., Bae, Y., Suh, K., & Jung, J. (2007). Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 20(6), 867–876. doi:10.1159/000110447.

    CAS  Google Scholar 

  102. Hsiao, S. T., Asgari, A., Lokmic, Z., Sinclair, R., Dusting, G. J., Lim, S. Y., & Dilley, R. J. (2012). Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells and Development, 21(12), 2189–2203. doi:10.1089/scd.2011.0674.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., Springeling, T., de Jong, R., van Geuns, R. J., Geleijnse, M. L., Fernandez-Aviles, F., Zijlsta, F., Serruys, P. W., & Duckers, H. J. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59(5), 539–540. doi:10.1016/j.jacc.2011.09.065.

    PubMed  Google Scholar 

  104. Perin, E. C., Sanz-Ruiz, R., Sanchez, P. L., Lasso, J., Perez-Cano, R., Alonso-Farto, J. C., Perez-David, E., Fernandez-Santos, M. E., Serruys, P. W., Duckers, H. J., Kastrup, J., Chamuleau, S., Zheng, Y., Silva, G. V., Willerson, J. T., & Fernandez-Aviles, F. (2014). Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. American Heart Journal, 168(1), 88–95 e82. doi:10.1016/j.ahj.2014.03.022.

    PubMed  CAS  Google Scholar 

  105. Qayyum, A. A., Haack-Sorensen, M., Mathiasen, A. B., Jorgensen, E., Ekblond, A., & Kastrup, J. (2012). Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regenerative Medicine, 7(3), 421–428. doi:10.2217/rme.12.17.

    PubMed  CAS  Google Scholar 

  106. Schulman, I. H., & Hare, J. M. (2012). Key developments in stem cell therapy in cardiology. Regenerative Medicine, 7(6 Suppl), 17–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Naaijkens, B. A., van Dijk, A., Kamp, O., Krijnen, P. A., Niessen, H. W., & Juffermans, L. J. (2014). Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. Stem Cell Reviews. doi:10.1007/s12015-014-9502-7.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81270068), Zhejiang Health Bureau Cultivation Plan (2014PYA020), and Shaoxing 330 Plan to JX and the National Natural Science Foundation of China (81272139) and the National Science and Technology Support Program (2012BAI04B05) to QS.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Xu.

Additional information

Editor-in-Chief Jennifer L. Hall oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Qin, F., Ge, M. et al. Application of Adipose-Derived Stem Cells in Heart Disease. J. of Cardiovasc. Trans. Res. 7, 651–663 (2014). https://doi.org/10.1007/s12265-014-9585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9585-1

Keywords

Navigation