Skip to main content
Log in

Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expression in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain.

Methods

A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the expression of TRPV1 was assessed after treatment with 100 μmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N-terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor].

Results

In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 μmol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression.

Conclusion

Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral afferents plays a role in bone cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Portenoy RK, Payne D, Jacobsen P. Breakthrough pain: characteristics and impact in patients with cancer pain. Pain 1999, 81: 129–134.

    Article  PubMed  CAS  Google Scholar 

  2. Ghilardi JR, Röhrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci 2005, 25: 3126–3131.

    Article  PubMed  CAS  Google Scholar 

  3. Kalasz H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem 2003, 3: 175–192.

    Article  PubMed  CAS  Google Scholar 

  4. Ebeler SE, Clifford AJ, Shibamoto T. Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. J Chromatogr B Biomed Sci Appl 1997, 702: 211–215.

    Article  PubMed  CAS  Google Scholar 

  5. Spanel P, Smith D, Holland TA, Al Singary W, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 1999, 13: 1354–1359.

    Article  PubMed  CAS  Google Scholar 

  6. Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol 2005, 3: 15–24.

    PubMed  CAS  Google Scholar 

  7. Thorndike J, Beck WS. Production of formaldehyde from N5-methyltetrahydrofolate by normal and leukemic leukocytes. Cancer Res 1977, 37: 1125–1132.

    PubMed  CAS  Google Scholar 

  8. Tong Z, Luo W, Wang Y, Yang F, Han Y, Li H, et al. Tumor tissuederived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS One 2010, 5: e10234.

    Article  PubMed  Google Scholar 

  9. Pei L, Lin CY, Dai JP, Yin GF. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull 2007, 23: 92–100.

    Article  PubMed  CAS  Google Scholar 

  10. Luo H, Cheng J, Han JS, Wan Y. Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund’s adjuvant in rats. Neuroreport 2004, 15: 655–658.

    Article  PubMed  CAS  Google Scholar 

  11. Christoph T, Grunweller A, Mika J, Schäfer MK, Wade EJ, Weihe E, et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 2006, 350: 238–243.

    Article  PubMed  CAS  Google Scholar 

  12. Niiyama Y, Kawamata T, Yamamoto J, Omote K, Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience 2007, 148: 560–572.

    Article  PubMed  CAS  Google Scholar 

  13. Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, et al. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol Pain 2008, 4: 61.

    Article  PubMed  Google Scholar 

  14. Niiyama Y, Kawamata T, Yamamoto J, Furuse S, Namiki A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth 2009, 102: 251–258.

    Article  PubMed  CAS  Google Scholar 

  15. Du Y, Xiao Y, Lu ZM, Ding J, Xie F, Fu H, et al. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun 2011, 408: 32–37.

    Article  PubMed  CAS  Google Scholar 

  16. Xia R, Samad TA, Btesh J, Jiang LH, Kays I, Stjernborg L, et al. TRPV1 signaling: mechanistic understanding and therapeutic potential. Curr Top Med Chem 2011, 11: 2180–2191.

    Article  PubMed  CAS  Google Scholar 

  17. Tian LJ, Du Y, Xiao Y, Lv ZM, Yu YQ, Cui XY, et al. Mediating roles of the vanilloid receptor TRPV1 in activation of rat primary afferent nociceptive neurons by formaldehyde. Acta Physiol Sin 2009, 61: 404–416.

    CAS  Google Scholar 

  18. Svensson C, Part K, Kunnis-Beres K, Kaldmäe M, Fernaeus SZ, Land T. Pro-survival effects of JNK and p38 MAPK pathways in LPS-induced activation of BV-2 cells. Biochem Biophys Res Commun 2011, 406: 488–492.

    Article  PubMed  CAS  Google Scholar 

  19. Doya H, Ohtori S, Fujitani M, Saito T, Hata K, Ino H, et al. c-Jun N-terminal kinase activation in dorsal root ganglion contributes to pain hypersensitivity. Biochem Biophys Res Commun 2005, 335: 132–138.

    Article  PubMed  CAS  Google Scholar 

  20. Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Zhang YQ. Protein kinases as potential targets for the treatment of pathological pain. Handb Exp Pharmacol 2007: 359–389.

  21. Ji RR, Strichartz G. Cell signaling and the genesis of neuropathic pain. Sci STKE 2004, 2004: E14.

    Article  Google Scholar 

  22. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36: 57–68.

    Article  PubMed  CAS  Google Scholar 

  23. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 2004, 279: 25665–25672.

    Article  PubMed  CAS  Google Scholar 

  24. Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004, 24: 8300–8309.

    Article  PubMed  CAS  Google Scholar 

  25. Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C epsilon- and A-dependent mechanisms in rats and mice. J Physiol 2006, 575(Pt 2): 555–571.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR, et al. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKC epsilon: a novel pathway for heat hyperalgesia. J Neurosci 2007, 27: 12067–12077.

    Article  PubMed  CAS  Google Scholar 

  27. Feick P, Haas SR, Singer MV, Böcker U. Low-dose exposure of intestinal epithelial cells to formaldehyde results in MAP kinase activation and molecular alteration of the focal adhesion protein paxillin. Toxicology 2006, 219: 60–72.

    Article  PubMed  CAS  Google Scholar 

  28. Lim SK, Kim JC, Moon CJ, Kim GY, Han HJ, Park SH. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells. Toxicology 2010, 271: 100–106.

    Article  PubMed  CAS  Google Scholar 

  29. Medhurst SJ, Walker K, Bowes M, Kidd BL, Glatt M, Muller M, et al. A rat model of bone cancer pain. Pain 2002, 96: 129–140.

    Article  PubMed  CAS  Google Scholar 

  30. Fujita M, Ueda T, Handa T. Generation of formaldehyde by pharmaceutical excipients and its absorption by meglumine. Chem Pharm Bull (Tokyo) 2009, 57: 1096–1099.

    Article  CAS  Google Scholar 

  31. O’Neil KA, Miller FR, Barder TJ, Lubman DM. Profiling the progression of cancer: separation of microsomal proteins in MCF10 breast epithelial cell lines using nonporous chromatophoresis. Proteomics 2003, 3: 1256–1269.

    Article  PubMed  Google Scholar 

  32. Wang Y. The functional regulation of TRPV1 and its role in pain sensitization. Neurochem Res 2008, 33: 2008–2012.

    Article  PubMed  CAS  Google Scholar 

  33. Cheng JK, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 2008, 33: 1970–1978.

    Article  PubMed  CAS  Google Scholar 

  34. Bron R, Klesse LJ, Shah K, Parada LF, Winter J. Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Mol Cell Neurosci 2003, 22: 118–132.

    Article  PubMed  CAS  Google Scholar 

  35. Chen Y, Geis C, Sommer C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci 2008, 28: 5836–5845.

    Article  PubMed  CAS  Google Scholar 

  36. Pezet S, Marchand F, D’Mello R, Grist J, Clark AK, Malcangio M, et al. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions. J Neurosci 2008, 28: 4261–4270.

    Article  PubMed  CAS  Google Scholar 

  37. Bonnas C, Specht K, Spleiss O, Froehner S, Dietmann G, Krüger JM, et al. Effects of cold ischemia and inflammatory tumor microenvironment on detection of PI3K/AKT and MAPK pathway activation patterns in clinical cancer samples. Int J Cancer 2011 [Epub ahead of print]

  38. Shi TJ, Huang P, Mulder J, Ceccatelli S, Hokfelt T. Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals 2009, 17: 203–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Wan.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Li, Y., Xiao, X. et al. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci. Bull. 28, 165–172 (2012). https://doi.org/10.1007/s12264-012-1211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1211-0

Keywords

Navigation