Skip to main content
Log in

Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cellobiose has garnered attention as an alternative carbon source for numerous biotechnological processes because it is produced when lignocellulosic biomass is treated with endo and exo-glucanases. An engineered Saccharomyces cerevisiae (CEL), expressing cellobiose transporter and intracellular beta-glucosidase utilized cellobiose efficiently. As compared to the culture using glucose, the CEL strain grown on cellobiose produced a similar yield of ethanol with slightly reduced growth rate. In this study, concentrations of central metabolites were monitored at mid-log phase with GC/MS to compare cellobiose- and glucose-grown CEL strain. When the CEL strain was grown on cellobiose, intracellular trehalose concentration increased 6-fold as compared with the glucosegrown cells. Interestingly, the higher level of trehalose in cells grown on cellobiose resulted in physiological changes which might be beneficial for biotechnological processes. We observed higher resistance against oxidative stress when cellobiose was used. Oxidative stress is commonly occurred by the byproducts of pretreatment process of lignocellulosic biomass, such as 2-furaldehyde (furfural) and 5-hydroxymethylfurfural (HMF). Our study demonstrated that intracellular metabolite profiling of yeast strains can be employed for linking intracellular concentrations of metabolite with physiological changes of cells upon genetic and environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, J., E. Nelson, D. Tilman, S. Polasky, and D. Tiffany (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA. 103: 11206–11210.

    Article  CAS  Google Scholar 

  2. Stephanopoulos, G. (2007) Challenges in engineering microbes for biofuels production. Sci. 315: 801–804.

    Article  CAS  Google Scholar 

  3. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.

    Article  CAS  Google Scholar 

  4. Karhumaa, K., R. Garcia-Sanchez, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund (2007) Comparison of the xylose reductasexylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell. Fact. 6: 5.

    Article  Google Scholar 

  5. Jeffries, T. W. and Y. S. Jin (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495–509.

    Article  CAS  Google Scholar 

  6. Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin (2011) Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29: 675–685.

    Article  CAS  Google Scholar 

  7. Bengtsson, O., B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 2: 9.

    Article  Google Scholar 

  8. Matsushika, A., S. Watanabe, T. Kodaki, K. Makino, and S. Sawayama (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J. Biosci. Bioeng. 105: 296–299.

    Article  CAS  Google Scholar 

  9. Jin, Y. S., H. Alper, Y. T. Yang, and G. Stephanopoulos (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71: 8249-8256.

  10. Lu, C. and T. Jeffries (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 73: 6072–6077.

    Article  CAS  Google Scholar 

  11. Hamacher, T., J. Becker, M. Gárdonyi, B. Hahn-Hägerdal, and E. Boles (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol. 148: 2783–2788.

    CAS  Google Scholar 

  12. Kim, S. R., J. M. Skerker, W. Kang, A. Lesmana, N. Wei, A. P. Arkin, and Y. S. Jin (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE 8: e57048.

    Article  CAS  Google Scholar 

  13. Kim, J. H., D. E. Block, and D. A. Mills (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88: 1077–1085.

    Article  CAS  Google Scholar 

  14. Subtil, T. and E. Boles (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 5: 14.

    Article  CAS  Google Scholar 

  15. Kahar, P., K. Taku, and S. Tanaka (2011) Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae. J. Biosci. Bioeng. 111: 557–563.

    Article  CAS  Google Scholar 

  16. Li, S., J. Du, J. Sun, J. M. Galazka, N. L. Glass, J. H. Cate, X. Yang, and H. Zhao (2010) Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a ß-glucosidase in Saccharomyces cerevisiae. Mol. Biosyst. 6: 2129–2132.

    Article  CAS  Google Scholar 

  17. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.

    Article  CAS  Google Scholar 

  18. Ha, S. J., J. M. Galazka, S. R. Kim, J. H. Choi, X. Yang, J. H. Seo, N. L. Glass, J. H. Cate, and Y. S. Jin (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA. 108: 504–509.

    Article  CAS  Google Scholar 

  19. Galazka, J. M., C. Tian, W. T. Beeson, B. Martinez, N. L. Glass, and J. H. Cate (2010) Cellodextrin transport in yeast for improved biofuel production. Sci. 330: 84–86.

    Article  CAS  Google Scholar 

  20. Ha, S. J., H. Kim, Y. Lin, M. U. Jang, J. M. Galazka, T. J. Kim, J. H. Cate, and Y. S. Jin (2013) Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79: 1500–1507.

    Article  CAS  Google Scholar 

  21. Eriksen, D. T., P. C. Hsieh, P. Lynn, and H. Zhao (2013) Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb. Cell. Fact. 12: 61.

    Article  CAS  Google Scholar 

  22. Yuan, Y. and H. Zhao (2013) Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain. Biotechnol. Bioeng. 110: 2874–2881.

    Article  CAS  Google Scholar 

  23. Jung, J. Y., T. Y. Kim, C. Y. Ng, and M. K. Oh (2012) Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling. J. Appl. Microbiol. 113: 1468–1478.

    Article  CAS  Google Scholar 

  24. Ryan, D. and K. Robards (2006) Metabolomics: The greatest omics of them all? Anal. Chem. 78: 7954–7958.

    CAS  Google Scholar 

  25. Villas-Bôas, S. G., J. Højer-Pedersen, M. Akesson, J. Smedsgaard, and J. Nielsen (2005) Global metabolite analysis of yeast: Evaluation of sample preparation methods. Yeast 22: 1155–1169.

    Article  Google Scholar 

  26. Lange, H. C., M. Eman, G. van Zuijlen, D. Visser, J. C. van Dam, J. Frank, M. J. de Mattos, and J. J. Heijnen (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol. Bioeng. 75: 406–415.

    Article  CAS  Google Scholar 

  27. Gonzalez, B., J. François, and M. Renaud (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast. 13: 1347-1355.

  28. Benaroudj, N., D. H. Lee, and A. L. Goldberg (2001) Trehalose accumulation during cellular stress protects cell and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276: 24261–24267.

    Article  CAS  Google Scholar 

  29. Bell, W., W. Sun, S. Hohmann, S. Wera, A. Reinders, C. De Virgilio, A. Wiemken, and J. M. Thevelein (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 273: 33311–33319.

    Article  CAS  Google Scholar 

  30. Henle, E. S. and S. Linn (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272: 19095–19098.

    Article  CAS  Google Scholar 

  31. Halliwell, B. and J. M. Gutteridge (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14.

    CAS  Google Scholar 

  32. Zheng, Y., Z. Pan, and R. Zhang (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int. J. Agric & Biol Eng. 2: 51–68.

    CAS  Google Scholar 

  33. Klinke, H. B., L. Olsson, A. B. Thomsen, and B. K. Ahring (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81:738–747.

    Article  CAS  Google Scholar 

  34. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl. Microbiol. Biotechnol. 66: 10–26.

    Article  CAS  Google Scholar 

  35. Palmqvist, E. and B. Hahn-Hägerdal (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25–33.

    CAS  Google Scholar 

  36. Allen, S. A., W. Clark, J. M. McCaffery, Z. Cai, A. Lanctot, P. J. Slininger, Z. L. Liu, and S. W. Gorsich (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels. 3: 2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyu Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, TY., Oh, E.J., Jin, YS. et al. Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling. Biotechnol Bioproc E 19, 951–957 (2014). https://doi.org/10.1007/s12257-014-0301-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0301-4

Keywords

Navigation