Skip to main content
Log in

Clinical implications of DNA repair genetic alterations in cancer

  • Short Review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

The overall prognosis of advanced cancer remains poor. Whilst accumulation of genetic mutations drives the cancerous phenotype, it is well known that DNA damaging lesions that lead to such mutations are predominantly monitored and repaired by the highly conserved DNA repair machinery in cells. Though chemotherapy as well as radiotherapy remains the mainstay of treatment, it is clear that the cancer cell's ability to respond to DNA damaging lesions induced by cytotoxic agents has a major bearing upon therapeutic efficacy and normal tissue toxicity. In this article we provide an overview on the role of DNA repair factors as prognostic/predictive markers with a specific focus on genetic alterations that confer altered DNA repair capacity in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73: 39–85, 2004

    Article  PubMed  CAS  Google Scholar 

  • Gossage L, Madhusudan S. Cancer pharmacogenomics: role of DNA repair genetic polymorphisms in individualizing cancer therapy. Mol Diagn Ther, 11: 361–380, 2007

    PubMed  CAS  Google Scholar 

  • Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res, 18: 64–72, 2008

    Article  PubMed  CAS  Google Scholar 

  • Verbeek B, Southgate TD, Gilham DE, et al. O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull, 85: 17–33, 2008

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature, 411: 366–374, 2001

    Article  PubMed  CAS  Google Scholar 

  • De la Torre C, Pincheira J, Lopez-Saez JF. Human syndromes with genomic instability and multiprotein machines that repair DNA double-strand breaks. Histol Histopathol, 18: 225–243, 2003

    PubMed  CAS  Google Scholar 

  • Brookes AJ. The essence of SNPs. Gene, 234: 177–186, 1999

    Article  PubMed  CAS  Google Scholar 

  • Patra SK, Patra A, Rizzi F, et al. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev, 27: 315–334, 2008

    Article  PubMed  CAS  Google Scholar 

  • Vilmar A, Sorensen JB. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature. Lung Cancer, Epub ahead of print, 2008

  • Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res, 58: 604–608, 1998

    PubMed  CAS  Google Scholar 

  • Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med, 355: 983–991, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol, 25: 2747–2754, 2007

    Article  PubMed  CAS  Google Scholar 

  • Yu JJ, Lee KB, Mu C, et al. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol, 16: 555–560, 2000

    PubMed  CAS  Google Scholar 

  • Gossage L, Madhusudan S. Current status of excision repair cross complementing-group 1 (ERCC1) in cancer. Cancer Treat Rev, 33: 565–577, 2007

    Article  PubMed  CAS  Google Scholar 

  • Benhamou S, Sarasin A. ERCC2/XPD gene polymorphisms and lung cancer: a HuGE review. Am J Epidemiol, 161: 1–14, 2005

    Article  PubMed  Google Scholar 

  • Bobola MS, Finn LS, Ellenbogen RG, et al. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin Cancer Res, 11: 7405–7414, 2005

    Article  PubMed  CAS  Google Scholar 

  • Bobola MS, Emond MJ, Blank A, et al. Apurinic endonuclease activity in adult gliomas and time to tumor progression after alkylating agent-based chemotherapy and after radiotherapy. Clin Cancer Res, 10: 7875–7883, 2004

    Article  PubMed  CAS  Google Scholar 

  • Li D, Li Y, Jiao L, et al. Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer, 120: 1748–1754, 2007

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Murat A, Lambiv WL, et al. Brain tumors: molecular biology and targeted therapies. Ann Oncol, 17(Suppl 10): x191–x197, 2006

    Article  PubMed  Google Scholar 

  • Hamelin R, Chalastanis A, Colas C, et al. Clinical and molecular consequences of microsatellite instability in human cancers. Bull Cancer, 95: 121–132, 2008

    PubMed  CAS  Google Scholar 

  • Bendardaf R, Lamlum H, Ristamaki R, et al. Mismatch repair status is a predictive factor of tumour response to 5-fluorouracil and irinotecan chemotherapy in patients with advanced colorectal cancer. Tumour Biol, 28: 212–220, 2007

    Article  PubMed  CAS  Google Scholar 

  • Jover R, Zapater P, Castells A, et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut, 55: 848–855, 2006

    Article  PubMed  CAS  Google Scholar 

  • Pors K, Patterson LH. DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents. Curr Top Med Chem, 5: 1133–1149, 2005

    Article  PubMed  CAS  Google Scholar 

  • Maxwell JA, Johnson SP, McLendon RE, et al. Mismatch repair deficiency does not mediate clinical resistance to temozolomide in malignant glioma. Clin Cancer Res, 14: 4859–4868, 2008

    Article  PubMed  CAS  Google Scholar 

  • Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature, 408: 429–432, 2000

    Article  PubMed  CAS  Google Scholar 

  • James CR, Quinn JE, Mullan PB, et al. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist, 12: 142–150, 2007

    Article  PubMed  CAS  Google Scholar 

  • Byrski T, Gronwald J, Huzarski T, et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat, 108: 289–296, 2008

    Article  PubMed  CAS  Google Scholar 

  • Wysocki PJ, Korski K, Lamperska K, et al. Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations. Med Sci Monit, 14: SC7–SC10, 2008

    PubMed  CAS  Google Scholar 

  • Hennequin C, Quero L, Favaudon V. Determinants and predictive factors of tumour radiosensitivity. Cancer Radiother, 12: 3–13, 2008

    PubMed  Google Scholar 

  • Fernet M, Hall J. Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair (Amst), 3: 1237–1243, 2004

    Article  CAS  Google Scholar 

  • Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol, 47: 809–824, 2008

    Article  PubMed  CAS  Google Scholar 

  • Ho AY, Atencio DP, Peters S, et al. Genetic predictors of adverse radiotherapy effects: the Gene-PARE project. Int J Radiat Oncol Biol Phys, 65: 646–655, 2006

    PubMed  Google Scholar 

  • Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer, 8: 193–204, 2008

    Article  PubMed  CAS  Google Scholar 

  • Madhusudan S, Hickson ID. DNA repair inhibition: a selective tumour targeting strategy. Trends Mol Med, 11: 503–511, 2005

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Plummer ER. PARP inhibitors and cancer therapy – early results and potential applications. Br J Radiol, 81(1): S2–S5, 2008

    Article  PubMed  CAS  Google Scholar 

  • Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol, 8: 363–369, 2008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Madhusudan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gossage, L., Mohammed, M. & Madhusudan, S. Clinical implications of DNA repair genetic alterations in cancer. memo 2, 15–19 (2009). https://doi.org/10.1007/s12254-009-0093-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-009-0093-y

Keywords

Navigation