Skip to main content

Advertisement

Log in

Molecular mechanisms of sensitivity and resistance to radiotherapy

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The molecular mechanisms underlying sensitivity and resistance to radiotherapy is an area of active investigation and discovery as its clinical applications have the potential to improve cancer patients’ outcomes. In addition to the traditional pathways of radiation biology, our knowledge now includes molecular pathways of radiation sensitivity and resistance which have provided insights into potential targets for enhancing radiotherapy efficacy. Sensitivity to radiotherapy is influenced by the intricate interplay of various molecular mechanisms involved in DNA damage repair, apoptosis, cellular senescence, and epigenetics. Translationally, there have been several successful applications of this new knowledge into the clinic, such as biomarkers for improved response to chemo-radiation. New therapies to modify radiation response, such as the poly (ADP-ribose) polymerase (PARP) inhibitors, derived from research on DNA repair pathways leading to radiotherapy resistance, are being used clinically. In addition, p53-mediated pathways are critical for DNA damage related apoptosis, cellular senescence, and cell cycle arrest. As the understanding of genetic markers, molecular profiling, molecular imaging, and functional assays improve, these advances once translated clinically, will help propel modern radiation therapy towards more precise and individualized practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199. https://doi.org/10.7150/ijms.3635Epub 2012 Feb 27. PMID: 22408567; PMCID: PMC3298009

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arenz A, Ziemann F, Mayer C et al (2014) Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlenther Onkol 190:839–846. https://doi.org/10.1007/s00066-014-0605-5

    Article  PubMed  Google Scholar 

  3. Hall E, Giaccia A (2018) Radiobiology for Radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Sinclair WK (1968) Cyclic X-ray responses in mammalian cells in vitro. Radiat Res. 2012;178(2):AV112-AV124. https://doi.org/10.1667/rrav09.1

  5. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signaling on cancer chemotherapy response and resistance. Nat Rev Cancer 12(9):587–598. https://doi.org/10.1038/nrc3342

    Article  CAS  PubMed  Google Scholar 

  6. Vispé S, Cazaux C, Lesca C, Defais M Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation, Nucleic Acids Research, Volume 26, Issue 12, 1 June 1998, Pages 2859–2864, https://doi.org/10.1093/nar/26.12.2859

  7. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431. https://doi.org/10.1016/j.cell.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  8. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. https://doi.org/10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14(5):359–370. https://doi.org/10.1038/nrc3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59(4):928–942. https://doi.org/10.1016/j.ijrobp.2004.03.005

    Article  PubMed  Google Scholar 

  11. Kim NH, Kim HS, Li XY et al (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195(3):417–433. https://doi.org/10.1083/jcb.201103097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of Tumorigenesis. Genes Cancer 2(4):466–474. https://doi.org/10.1177/1947601911408889PMID: 21779514; PMCID: PMC3135636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Lu Q, Chang C (2020) Epigenetics in Health and Disease. Adv Exp Med Biol 1253:3–55. https://doi.org/10.1007/978-981-15-3449-2_1

    Article  CAS  PubMed  Google Scholar 

  14. Hegi ME, Liu L, Herman JG et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199. https://doi.org/10.1200/JCO.2007.11.5964

    Article  CAS  PubMed  Google Scholar 

  15. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  16. Morrison C, Weterings E, Mahadevan D, Sanan A, Weinand M, Stea B (2021) Expression levels of RAD51 inversely correlate with survival of Glioblastoma patients. Cancers 13(21):5358. https://doi.org/10.3390/cancers13215358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lickliter JD, Ruben J, Kichenadasse G, Jennens R, Gzell C, Mason RP, Zhou H, Becker J, Unger E, Stea B (2023) Dodecafluoropentane Emulsion as a Radiosensitizer in Glioblastoma Multiforme. Cancer Res Commun 3(8):1607–1614. https://doi.org/10.1158/2767-9764.CRC-22-0433PMID: 37609003; PMCID: PMC10441549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B (2020) Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. Med Comm 2021;2(3):315–340. https://doi.org/10.1002/mco2.55

  19. Huang RX, Zhou PK (2020) DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 5(1):60. https://doi.org/10.1038/s41392-020-0150-x. Published 2020 May 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ang MK, Patel MR, Yin XY et al (2011) High XRCC1 protein expression is associated with poorer survival in patients with head and neck squamous cell carcinoma. Clin Cancer Res 17(20):6542–6552. https://doi.org/10.1158/1078-0432.CCR-10-1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Terrazzino S, La Mattina P, Masini L et al (2012) Common variants of eNOS and XRCC1 genes may predict acute skin toxicity in breast cancer patients receiving radiotherapy after breast conserving surgery. Radiother Oncol 103(2):199–205. https://doi.org/10.1016/j.radonc.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Osti MF, Nicosia L, Agolli L et al (2017) Potential role of single nucleotide polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute toxicity in rectal Cancer patients treated with preoperative Radiochemotherapy. Am J Clin Oncol 40(6):535–542. https://doi.org/10.1097/COC.0000000000000182

    Article  CAS  PubMed  Google Scholar 

  23. Sak SC, Harnden P, Johnston CF, Paul AB, Kiltie AE (2005) APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res 11(17):6205–6211. https://doi.org/10.1158/1078-0432.CCR-05-0045

    Article  CAS  PubMed  Google Scholar 

  24. Pedersen H, Adanma Obara E, Elbæk KJ, Vitting-Serup K, Hamerlik P, Replication Protein A (RPA) Mediates Radio-Resistance of Glioblastoma Cancer Stem-Like Cells (eds) (2020) Int J Mol Sci. 21(5):1588. Published 2020 Feb 26. https://doi.org/10.3390/ijms21051588

  25. VanderVere-Carozza PS, Gavande NS, Jalal SI et al (2022) Vivo targeting replication protein A for Cancer Therapy. Front Oncol 12:826655 Published 2022 Feb 18. https://doi.org/10.3389/fonc.2022.826655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D (2022) The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 9:1073797 Published 2022 Dec 1. https://doi.org/10.3389/fmolb.2022.1073797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryu H, Kim HJ, Song JY et al (2019) A small compound KJ-28d enhances the sensitivity of Non-small Cell Lung Cancer to Radio- and chemotherapy. Int J Mol Sci 20(23):6026 Published 2019 Nov 29. https://doi.org/10.3390/ijms20236026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suwa T, Kobayashi M, Nam JM, Harada H (2021) Tumor microenvironment and radioresistance. Exp Mol Med 53(6):1029–1035. https://doi.org/10.1038/s12276-021-00640-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu TY, Yang JT, Huang TH, Liu HW (2014) Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells. Radiat Res. 181(5):540–7. https://doi.org/10.1667/RR13583.1. Epub 2014 May 1. PMID: 24785588

  30. Chen Z, Dominello MM, Joiner MC, Burmeister JW (2023) Proton versus photon radiation therapy: A clinical review. Front Oncol. 13:1133909. Published 2023 Mar 29. https://doi.org/10.3389/fonc.2023.1133909

  31. Sartor O, de Bono J, Chi KN et al (2021) Lutetium-177-PSMA-617 for metastatic castration-resistant prostate Cancer. N Engl J Med 385(12):1091–1103. https://doi.org/10.1056/NEJMoa2107322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. English KK, Knox S, Graves SA, Kiess AP (2022) Basics of physics and Radiobiology for Radiopharmaceutical therapies. Pract Radiat Oncol 12(4):289–293. https://doi.org/10.1016/j.prro.2022.04.004

    Article  PubMed  Google Scholar 

  33. Evaluation of 177 Lu-DOTA-EB-FAPI in patients with metastatic Radioactive Iodine refractory thyroid Cancer. ClinicalTrials.gov Identifier: NCT05410821

  34. Borghini A, Vecoli C, Labate L, Panetta D, Andreassi MG, Gizzi LA (2022) FLASH ultra-high dose rates in radiotherapy: preclinical and radiobiological evidence. Int J Radiat Biol 98(2):127–135. https://doi.org/10.1080/09553002.2022.2009143

    Article  CAS  PubMed  Google Scholar 

  35. Favaudon V, Caplier L, Monceau V et al (2014) Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice [published correction appears in Sci Transl Med. 2019;11(523)]. Sci Transl Med 6(245):245ra93. https://doi.org/10.1126/scitranslmed.3008973

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BS conceived manuscript. JX and BS wrote the manuscript. All authors reviewed final manuscript.

Corresponding author

Correspondence to Baldassarre Stea.

Ethics declarations

Conflict of interest

None.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J.L., Stea, B. Molecular mechanisms of sensitivity and resistance to radiotherapy. Clin Exp Metastasis (2024). https://doi.org/10.1007/s10585-023-10260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10585-023-10260-4

Keywords

Navigation