Skip to main content

Advertisement

Log in

Pathogenetic consequences of cytomegalovirus-host co-evolution

  • Published:
Virologica Sinica

Abstract

Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution, the adaptive behavior is most evident from the reciprocal change in fitness of host and parasite-manifested in terms of pathogen survival versus host resistance. Cytomegaloviruses and their hosts represent a pairing of populations that has co-evolved over hundreds of years. This review explores the pathogenetic consequences emerging from the behavioral changes caused by co-evolutionary forces on the virus and its host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler S P, Marshall B. 2007. Cytomegalovirus infections. Pediatr Rev, 28: 92–100.

    PubMed  Google Scholar 

  2. Ahn K, Angulo A, Ghazal P, et al. 1996. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA, 93: 10990–10995.

    PubMed  CAS  Google Scholar 

  3. Ahn K, Gruhler A, Galocha B, et al. 1997. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity, 6: 613–621.

    PubMed  CAS  Google Scholar 

  4. Arase H, Mocarski E S, Campbell A E, et al. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science, 296: 1323–1326.

    PubMed  CAS  Google Scholar 

  5. Askin D F. 2004. Intrauterine infections. Neonatal Netw, 23: 23–30.

    PubMed  Google Scholar 

  6. Atreya I, Atreya R, Neurath M F. 2008. NF-kappaB in inflammatory bowel disease. J Intern Med, 263:591–596.

    PubMed  CAS  Google Scholar 

  7. Bale J F. 2002. Congenital infections. Neurol Clin, 20:1039–1060.

    PubMed  Google Scholar 

  8. Bason C, Corrocher R, Lunardi C, et al. 2003. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet, 362: 1971–1977.

    PubMed  CAS  Google Scholar 

  9. Basta S, Bennink J R. 2003. A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol, 16: 231–242.

    PubMed  CAS  Google Scholar 

  10. Bauer D, Tampe R. 2002. Herpes viral proteins blocking the transporter associated with antigen processing TAP—from genes to function and structure. Curr Top Microbiol Immunol, 269: 87–99.

    PubMed  CAS  Google Scholar 

  11. Bego M G, St Jeor S. 2006. Human cytomegalovirus infection of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. Exp Hematol, 34: 555–570.

    PubMed  CAS  Google Scholar 

  12. Beisser P S, Goh C S, Cohen F E, et al. 2002. Viral chemokine receptors and chemokines in human cytomegalovirus trafficking and interaction with the immune system. CMV chemokine receptors. Curr Top Microbiol Immunol, 269: 203–34.

    PubMed  CAS  Google Scholar 

  13. Bentz G L, Yurochko A D. 2008. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and beta1 and beta3 integrins. Proc Natl Acad Sci USA, 105: 5531–5536.

    PubMed  CAS  Google Scholar 

  14. Boomker J M, de Jong E K, de Leij L F, et al. 2006. Chemokine scavenging by the human cytomegalovirus chemokine decoy receptor US28 does not inhibit monocyte adherence to activated endothelium. Antiviral Res, 69: 124–127.

    PubMed  CAS  Google Scholar 

  15. Boomker J M, van Luyn M J, The T H, et al. 2005. US28 actions in HCMV infection: lessons from a versatile hijacker. Rev Med Virol, 15: 269–282.

    PubMed  CAS  Google Scholar 

  16. Braud V M, Tomasec P, Wilkinson G W. 2002. Viral evasion of natural killer cells during human cytomegalovirus infection. Curr Top Microbiol Immunol, 269: 117–129.

    PubMed  CAS  Google Scholar 

  17. Bryant P, Morley C, Garland S, et al. 2002. Cytomegalovirus transmission from breast milk in premature babies: does it matter? Arch Dis Child Fetal Neonatal Ed, 87: F75–77.

    PubMed  CAS  Google Scholar 

  18. Candore G, Balistreri C R, Colonna-Romano G, et al. 2008. Immunosenescence and anti-immunosenescence therapies: the case of probiotics. Rejuvenation Res, 11: 425–432.

    PubMed  CAS  Google Scholar 

  19. Chalupny N J, Rein-Weston A, Dosch S, et al. 2006. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun, 346: 175–181.

    PubMed  CAS  Google Scholar 

  20. Chang M, Pan M R, Chen D Y, et al. 2006. Human cytomegalovirus pp65 lower matrix protein: a humoral immunogen for systemic lupus erythematosus patients and autoantibody accelerator for NZB/W F1 mice. Clin Exp Immunol, 143: 167–179.

    PubMed  CAS  Google Scholar 

  21. Chapman T L, Heikeman A P, Bjorkman P J. 1999. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity, 11: 603–613.

    PubMed  CAS  Google Scholar 

  22. Cosman D, Mullberg J, Sutherland C L, et al. 2001. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity, 14: 123–133.

    PubMed  CAS  Google Scholar 

  23. Criscuoli V, Rizzuto M R, Cottone M. 2006. Cytomega-lovirus and inflammatory bowel disease: is there a link? World J Gastroenterol, 12: 4813–4818.

    PubMed  Google Scholar 

  24. Damato E G, Winnen C W. 2002. Cytomegalovirus infection: perinatal implications. J Obstet Gynecol Neonatal Nurs, 31: 86–92.

    PubMed  Google Scholar 

  25. Davison A J, Dolan A, Akter P, et al. 2003. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol, 84: 17–28.

    PubMed  CAS  Google Scholar 

  26. DeFilippis V R. 2007. Induction and evasion of the type I interferon response by cytomegaloviruses. Adv Exp Med Biol, 598:309–24.

    PubMed  Google Scholar 

  27. Diaz F, Urkijo J C, Mendoza F, et al. 2006. Systemic lupus erythematosus associated with acute cytomegalovirus infection. J Clin Rheumatol, 12: 263–264.

    PubMed  Google Scholar 

  28. Dimitroulia E, Spanakis N, Konstantinidou A E, et al. 2006. Frequent detection of cytomegalovirus in the intestine of patients with inflammatory bowel disease. Inflamm Bowel Dis, 12: 879–884.

    PubMed  Google Scholar 

  29. Dugan G E, Hewitt E W. 2008. Structural and Functional Dissection of the Human Cytomegalovirus Immune Evasion Protein US6. J Virol, 82: 3271–3282.

    PubMed  CAS  Google Scholar 

  30. Dunn C, Chalupny N J, Sutherland C L, et al. 2003. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med, 197: 1427–1439.

    PubMed  CAS  Google Scholar 

  31. Dunn W, Chou C, Li H, et al. 2003. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci USA, 100: 14223–14228.

    PubMed  CAS  Google Scholar 

  32. Editorial Comments. 2004. Cytomegalovirus. Am J Transplant, 4Suppl 10:51–58.

    Google Scholar 

  33. Emery V C. 2001. Cytomegalovirus and the aging population. Drugs Aging, 18: 927–933.

    PubMed  CAS  Google Scholar 

  34. Emery V C. 2001. Investigation of CMV disease in immunocompromised patients. J Clin Pathol, 54: 84–88.

    PubMed  CAS  Google Scholar 

  35. Franceschi C. 2007. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev, 65: S173–176.

    PubMed  Google Scholar 

  36. Franceschi C, Bonafe M. 2003. Centenarians as a model for healthy aging. Biochem Soc Trans 31: 457–61.

    PubMed  CAS  Google Scholar 

  37. Froberg M K. 2004. Review: CMV escapes! Ann Clin Lab Sci, 34: 123–130.

    PubMed  CAS  Google Scholar 

  38. Gewurz B E, Gaudet R, Tortorella D, et al. 2001. Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA, 98: 6794–6799.

    PubMed  CAS  Google Scholar 

  39. Giunta S. 2006. Is inflammaging an auto[innate] immunity subclinical syndrome? Immun Ageing, 3: 12.

    PubMed  Google Scholar 

  40. Gold E, Nankervis G A. 1976. Cytomegalovirus. In: Viral infections of humans: epidemiology and control (Evans A S ed.), Plenum Press: New York, p 143–161.

    Google Scholar 

  41. Goldmacher V S. 2005. Cell death suppression by cytomegaloviruses. Apoptosis, 10: 251–265.

    PubMed  CAS  Google Scholar 

  42. Goldmacher V S. 2002. vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie, 84: 177–185.

    PubMed  CAS  Google Scholar 

  43. Hengel H, Koopmann J O, Flohr T, et al. 1997. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity, 6: 623–632.

    PubMed  CAS  Google Scholar 

  44. Hommes D W, Sterringa G, van Deventer S J, et al. 2004. The pathogenicity of cytomegalovirus in inflammatory bowel disease: a systematic review and evidence-based recommendations for future research. Inflamm Bowel Dis, 10: 245–250.

    PubMed  Google Scholar 

  45. Hooper M, Kallas E G, Coffin D, et al. 1999. Cytomegalovirus seropositivity is associated with the expansion of CD4+CD28 and CD8+CD28 T cells in rheumatoid arthritis. J Rheumatol, 26: 1452–1457.

    PubMed  CAS  Google Scholar 

  46. Hrycek A, Kusmierz D, Mazurek U, et al. 2005. Human cytomegalovirus in patients with systemic lupus erythematosus. Autoimmunity, 38: 487–491.

    PubMed  Google Scholar 

  47. Hussein K, Hayek T, Yassin K, et al. 2006. Acute cytomegalovirus infection associated with the onset of inflammatory bowel disease. Am J Med Sci, 331: 40–43.

    PubMed  Google Scholar 

  48. Jarvis M A, Borton J A, Keech A M, et al. 2006. Human cytomegalovirus attenuates interleukin-1beta and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-kappaB activation. J Virol, 80: 5588–5598.

    PubMed  CAS  Google Scholar 

  49. Jarvis M A, Nelson J A. 2002. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol, 5:403–407.

    PubMed  CAS  Google Scholar 

  50. Jarvis M A, Nelson J A. 2002. Mechanisms of human cytomegalovirus persistence and latency. Front Biosci, 7: 1575–1582.

    Google Scholar 

  51. Jenkins C, Abendroth A, Slobedman B. 2004. A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J Virol, 78: 1440–1447.

    PubMed  CAS  Google Scholar 

  52. Johnson D C, Hegde N R. 2002. Inhibition of the MHC class II antigen presentation pathway by human cytomegalovirus. Curr Top Microbiol Immunol, 269: 101–115.

    PubMed  CAS  Google Scholar 

  53. Jones T R, Wiertz E J, Sun L, et al. 1996. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA, 93: 11327–11333.

    PubMed  CAS  Google Scholar 

  54. Jurak I, Brune W. 2006. Induction of apoptosis limits cytomegalovirus cross-species infection. Embo J, 25: 2634–2642.

    PubMed  CAS  Google Scholar 

  55. Kanapeckiene V, Kalibatas J, Redaitiene E, et al. 2007. The association between cytomegalovirus infection and aging process. Medicina (Kaunas), 43: 419–424.

    Google Scholar 

  56. Kavanagh D G, Hill A B. 2001. Evasion of cytotoxic T lymphocytes by murine cytomegalovirus. Semin Immunol, 13: 19–26.

    PubMed  CAS  Google Scholar 

  57. Kerrey B T, Morrow A, Geraghty S, et al. 2006. Breast milk as a source for acquisition of cytomegalovirus (HCMV) in a premature infant with sepsis syndrome: detection by real-time PCR. J Clin Virol, 35: 313–316.

    PubMed  CAS  Google Scholar 

  58. Khan N. 2007. The immunological burden of human cytomegalovirus infection. Arch Immunol Ther Exp (Warsz), 55: 299–308.

    CAS  Google Scholar 

  59. Khan N, Hislop A, Gudgeon N, et al. 2004. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol, 173: 7481–7489.

    PubMed  CAS  Google Scholar 

  60. Khan N, Shariff N, Cobbold M, et al. 2002. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol, 169: 1984–1992.

    PubMed  CAS  Google Scholar 

  61. Khoshnevis M, Tyring S K. 2002. Cytomegalovirus infections. Dermatol Clin, 20: 291–299, vii.

    PubMed  Google Scholar 

  62. Kinney J S, Onorato I M, Stewart J A, et al. 1985. Cytomegaloviral infection and disease. J Infect Dis, 151: 772–774.

    PubMed  CAS  Google Scholar 

  63. Kojima T, Watanabe T, Hata K, et al. 2006. Cytomegalovirus infection in ulcerative colitis. Scand J Gastroenterol, 41: 706–711.

    PubMed  Google Scholar 

  64. Koutouzov S, Jeronimo A L, Campos H, et al. 2004. Nucleosomes in the pathogenesis of systemic lupus erythematosus. Rheum Dis Clin North Am, 30: 529–558, ix.

    PubMed  Google Scholar 

  65. Krmpotic A, Bubic I, Polic B, et al. 2003. Pathogenesis of murine cytomegalovirus infection. Microbes Infect, 5: 1263–1277.

    PubMed  CAS  Google Scholar 

  66. Landolfo S, Gariglio M, Gribaudo G, et al. 2003. The human cytomegalovirus. Pharmacol Ther, 98: 269–297.

    PubMed  CAS  Google Scholar 

  67. Lehner P J, Karttunen J T, Wilkinson G W, et al. 1997. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA, 94: 6904–6909.

    PubMed  CAS  Google Scholar 

  68. Lenac T, Arapovic J, Traven L, et al. 2008. Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol, 197: 159–166.

    PubMed  Google Scholar 

  69. Lin A, Xu H, Yan W. 2007. Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol Immunol, 4: 91–98.

    PubMed  Google Scholar 

  70. Lodoen M B, Abenes G, Umamoto S, et al. 2004. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med, 200: 1075–1081.

    PubMed  CAS  Google Scholar 

  71. Loenen W A, Bruggeman C A, Wiertz E J. 2001. Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Semin Immunol, 13: 41–49.

    PubMed  CAS  Google Scholar 

  72. Lunardi C, Bason C, Corrocher R, et al. 2005. Induction of endothelial cell damage by hCMV molecular mimicry. Trends Immunol, 26: 19–24.

    PubMed  CAS  Google Scholar 

  73. Lunardi C, Bason C, Navone R, et al. 2000. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med, 6: 1183–1186.

    PubMed  CAS  Google Scholar 

  74. Lunardi C, Dolcino M, Peterlana D, et al. 2006. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med, 3: e2.

    PubMed  Google Scholar 

  75. Lunardi C, Dolcino M, Peterlana D, et al. 2007. Endothelial cells’ activation and apoptosis induced by a subset of antibodies against human cytomegalovirus: relevance to the pathogenesis of atherosclerosis. PLoS ONE, 2: e473

    PubMed  Google Scholar 

  76. Mattey D L, Dawes P T, Nixon N B, et al. 2004. Increased levels of antibodies to cytokeratin 18 in patients with rheumatoid arthritis and ischaemic heart disease. Ann Rheum Dis, 63: 420–425.

    PubMed  CAS  Google Scholar 

  77. McCormick A L. 2008. Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol, 325: 281–295.

    PubMed  CAS  Google Scholar 

  78. Mehraein Y, Lennerz C, Ehlhardt S, et al. 2004. Latent Epstein-Barr virus (EBV) infection and cytomegalovirus (CMV) infection in synovial tissue of autoimmune chronic arthritis determined by RNA-and DNA-in situ hybridization. Mod Pathol, 17: 781–789.

    PubMed  CAS  Google Scholar 

  79. Mocarski E S. 2002. Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol, 10:332–339.

    PubMed  CAS  Google Scholar 

  80. Mocarski E S. Courcelle, C.T. Cytomegalovirus and their replication, In: Fields’ Virology (Knipe D M, Howley P M, ed.), Lippincott: Philadelphia, p2629–2673.

  81. Murphy E, Rigoutsos I, Shibuya T, et al. 2003. Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci USA, 100: 13585–13590.

    PubMed  CAS  Google Scholar 

  82. Murphy E, Yu D, Grimwood J, et al. 2003. Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci USA, 100: 14976–14981.

    PubMed  CAS  Google Scholar 

  83. Namboodiri A M, Rocca K M, Kuwana M, et al. 2006. Antibodies to human cytomegalovirus protein UL83 in systemic sclerosis. Clin Exp Rheumatol, 24: 176–178.

    PubMed  CAS  Google Scholar 

  84. Noyola D E, Valdez-Lopez B H, Hernandez-Salinas A E, et al. 2005. Cytomegalovirus excretion in children attending day-care centers. Arch Med Res, 36: 590–593.

    PubMed  Google Scholar 

  85. Pandey J P. 2004. Immunoglobulin GM genes and IgG antibodies to cytomegalovirus in patients with systemic sclerosis. Clin Exp Rheumatol, 22: S35–7.

    PubMed  CAS  Google Scholar 

  86. Pass R F. 2001. Cytomegalovirus, In: Fields’ Virology (Knipe D M, Howley P M ed.), Lippincott: Philadelphia, p2675–2705.

    Google Scholar 

  87. Pass R F. 2002. Cytomegalovirus infection. Pediatr Rev, 23: 163–170.

    PubMed  Google Scholar 

  88. Pass R F. 1985. Epidemiology and transmission of cytomegalovirus. J Infect Dis, 152: 243–248.

    PubMed  CAS  Google Scholar 

  89. Pawelec G, Gouttefangeas C. 2006. T-cell dysregulation caused by chronic antigenic stress: the role of CMV in immunosenescence? Aging Clin Exp Res, 18: 171–173.

    PubMed  Google Scholar 

  90. Pawelec G, Larbi A. 2008. Immunity and ageing in man: Annual Review 2006/2007. Exp Gerontol, 43: 34–38.

    PubMed  CAS  Google Scholar 

  91. Peichl P, Scriba M, Haberhauer G, et al. 1988. Selective binding of rheumatoid factors to antigen structures of cytomegalovirus (CMV). Scand J Rheumatol, Suppl 75: 117–122.

  92. Pereira L, Maidji E, McDonagh S, et al. 2005. Insights into viral transmission at the uterine-placental interface. Trends Microbiol, 13: 164–174.

    PubMed  CAS  Google Scholar 

  93. Plachter B, Sinzger C, Jahn G. 1996. Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res, 46: 195–261.

    PubMed  CAS  Google Scholar 

  94. Rafailidis P I, Mourtzoukou E G, Varbobitis I C, et al. 2008. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J, 5: 47.

    PubMed  Google Scholar 

  95. Rahbar A, Bostrom L, Soderberg-Naucler C. 2006. Detection of cytotoxic CD13-specific autoantibodies in sera from patients with ulcerative colitis and Crohn’s disease. J Autoimmun, 26: 155–164.

    PubMed  CAS  Google Scholar 

  96. Rajagopalan S, Long E O. 2005. Viral evasion of NK-cell activation. Trends Immunol, 26: 403–405.

    PubMed  CAS  Google Scholar 

  97. Randolph-Habecker J R, Rahill B, Torok-Storb B, et al. 2002. The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine, 19: 37–46.

    PubMed  CAS  Google Scholar 

  98. Rawlinson W D, Farrell H E, Barrell B G. 1996. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol, 70: 8833–8849.

    PubMed  CAS  Google Scholar 

  99. Reddehase M J, Podlech J, Grzimek N K. 2002. Mouse models of cytomegalovirus latency: overview. J Clin Virol, 25Suppl 2:S23–36.

    PubMed  CAS  Google Scholar 

  100. Reeves M B, Lehner P J, Sissons J G, et al. 2005. An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol, 86: 2949–2954.

    PubMed  CAS  Google Scholar 

  101. Reeves M B, MacAry P A, Lehner P J, et al. 2005. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci USA, 102: 4140–4145.

    PubMed  CAS  Google Scholar 

  102. Reynolds D W, Stagno S, Alford C A. 1981. Chronic congenital and perinatal infections, In: Neonatal pathophysiolaogy and management in the newborn (Avery G B, ed.). Lippincott: Philadelphia, p748–789.

    Google Scholar 

  103. Rezania D, Ouban A, Marcet J, et al. 2007. CMV colitis mimicking recurrent inflammatory bowel disease: report of three cases. Am Surg, 73: 58–61.

    PubMed  Google Scholar 

  104. Roback J D. 2002. CMV and blood transfusions. Rev Med Virol, 12: 211–219.

    PubMed  Google Scholar 

  105. Robinson J. 2001. Infectious diseases in schools and child care facilities. Pediatr Rev, 22: 39–46.

    PubMed  CAS  Google Scholar 

  106. Ross S A, Boppana S B. 2005. Congenital cytomegalovirus infection: outcome and diagnosis. Semin Pediatr Infect Dis, 16: 44–49.

    PubMed  Google Scholar 

  107. Sansoni P, Vescovini R, Fagnoni F, et al. 2008. The immune system in extreme longevity. Exp Gerontol, 43: 61–65.

    PubMed  CAS  Google Scholar 

  108. Scalzo A A, Corbett A J, Rawlinson W D, et al. 2007. The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol, 85: 46–54.

    PubMed  CAS  Google Scholar 

  109. Schleiss M R. 2003. Vertically transmitted herpesvirus infections. Herpes, 10:4–11.

    PubMed  Google Scholar 

  110. Sekigawa I, Nawata M, Seta N, et al. 2002. Cytomegalovirus infection in patients with systemic lupus erythematosus. Clin Exp Rheumatol, 20: 559–564.

    PubMed  CAS  Google Scholar 

  111. Sinclair J. 2008. Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J Clin Virol, 41: 180–185.

    PubMed  CAS  Google Scholar 

  112. Sinclair J, Sissons P. 2006. Latency and reactivation of human cytomegalovirus. J Gen Virol, 87: 1763–1779.

    PubMed  CAS  Google Scholar 

  113. Sinzger C, Jahn G. 1996. Human cytomegalovirus cell tropism and pathogenesis. Intervirology, 39: 302–319.

    PubMed  CAS  Google Scholar 

  114. Sissons J G, Bain M, Wills M R. 2002. Latency and reactivation of human cytomegalovirus. J Infect, 44: 73–77.

    PubMed  CAS  Google Scholar 

  115. Skaletskaya A, Bartle L M, Chittenden T, et al. 2001. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci USA, 98: 7829–7834.

    PubMed  CAS  Google Scholar 

  116. Smith H R, Heusel J W, Mehta I K, et al. 2002. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA, 99: 8826–8831.

    PubMed  CAS  Google Scholar 

  117. Smith M G. 1956. Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med, 92: 424–440.

    PubMed  CAS  Google Scholar 

  118. Smith M G. 1954. Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med, 86: 435–440.

    PubMed  CAS  Google Scholar 

  119. Soderberg-Naucler C, Fish K N, Nelson J A. 1997. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell, 91: 119–126.

    PubMed  CAS  Google Scholar 

  120. Soderberg-Naucler C, Streblow D N, Fish K N, et al. 2001. Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol, 75: 7543–7554.

    PubMed  CAS  Google Scholar 

  121. Stahl H D, Hubner B, Seidl B, et al. 2000. Detection of multiple viral DNA species in synovial tissue and fluid of patients with early arthritis. Ann Rheum Dis, 59: 342–346.

    PubMed  CAS  Google Scholar 

  122. Staras S A, Dollard S C, Radford K W, et al. 2006. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis, 43: 1143–1151.

    PubMed  Google Scholar 

  123. Streblow D N, Dumortier J, Moses A V, et al. 2008. Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol, 325: 397–415.

    PubMed  CAS  Google Scholar 

  124. Sutherland C L, Chalupny N J, Schooley K, et al. 2002. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol, 168: 671–679.

    PubMed  CAS  Google Scholar 

  125. Tang Q, Maul G G. 2006. Mouse cytomegalovirus crosses the species barrier with help from a few human cytomegalovirus proteins. J Virol, 80: 7510–7521.

    PubMed  CAS  Google Scholar 

  126. Terhune S, Torigoi E, Moorman N, et al. 2007. Human cytomegalovirus UL38 protein blocks apoptosis. J Virol, 81: 3109–3123.

    PubMed  CAS  Google Scholar 

  127. Thompson J N. 1994. The Coevolutionary Process. University of Chicago Press: Chicago, USA.

    Google Scholar 

  128. Tsuchiya N, Murayama T, Yoshinoya S, et al. 1993. Antibodies to human cytomegalovirus 65-kilodalton Fc binding protein in rheumatoid arthritis: idiotypic mimicry hypothesis of rheumatoid factor production. Autoimmunity, 15: 39–48.

    PubMed  CAS  Google Scholar 

  129. Vancikova Z, Dvorak P. 2001. Cytomegalovirus infection in immunocompetent and immunocompromised individuals—a review. Curr Drug Targets Immune Endocr Metabol Disord, 1: 179–187.

    PubMed  CAS  Google Scholar 

  130. Vasto S, Colonna-Romano G, Larbi A, et al. 2007. Role of persistent CMV infection in configuring T cell immunity in the elderly. Immun Ageing, 4: 2.

    PubMed  Google Scholar 

  131. Verdonk R C, Haagsma E B, Van Den Berg A P, et al. 2006. Inflammatory bowel disease after liver transplantation: a role for cytomegalovirus infection. Scand J Gastroenterol, 41: 205–211.

    PubMed  Google Scholar 

  132. Vescovini R, Biasini C, Fagnoni F F, et al. 2007. Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol, 179: 4283–4291.

    PubMed  CAS  Google Scholar 

  133. Vink C, Beuken E, Bruggeman C A. 2000. Complete DNA sequence of the rat cytomegalovirus genome. J Virol, 74: 7656–7665.

    PubMed  CAS  Google Scholar 

  134. Vitale M, Castriconi R, Parolini S, et al. 1999. The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. Int Immunol, 11: 29–35.

    PubMed  CAS  Google Scholar 

  135. Voigt S, Mesci A, Ettinger J, et al. 2007. Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity, 26: 617–627.

    PubMed  CAS  Google Scholar 

  136. Wagner C S, Ljunggren H G, Achour A. 2008. Immune modulation by the human cytomegalovirus-encoded molecule UL18, a mystery yet to be solved. J Immunol, 180: 19–24.

    PubMed  CAS  Google Scholar 

  137. Waller E C, Day E, Sissons J G, et al. 2008. Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol, 197: 83–96.

    PubMed  Google Scholar 

  138. Weller T H, Hanshaw J B, Scott D E. 1960. Serological differentiation of viruses responsible for cytomegalic inclusion disease. Virology, 12: 130–132.

    PubMed  CAS  Google Scholar 

  139. Wiertz E J, Jones T R, Sun L, et al. 1996. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell, 84: 769–779.

    PubMed  CAS  Google Scholar 

  140. Woolhouse M E, Webster J P, Domingo E, et al. 2002. Biological and biomedical implications of the coevolution of pathogens and their hosts. Nat Genet, 32: 569–577.

    PubMed  CAS  Google Scholar 

  141. Yi L, Lin J Y, Gao Y, et al. 2008. Detection of human cytomegalovirus in the atherosclerotic cerebral arteries in han population in china. Acta Virol, 52: 99–106.

    PubMed  CAS  Google Scholar 

  142. Ziemann M, Krueger S, Maier A B, et al. 2007. High prevalence of cytomegalovirus DNA in plasma samples of blood donors in connection with seroconversion. Transfusion, 47: 1972–1983.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenyong Liu.

Additional information

Foundation items: This work was, in part, supported by US Public Health Service (NIH grants AI041927, AI050468, DE014145, and DE016813).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abenes, G., Liu, F. Pathogenetic consequences of cytomegalovirus-host co-evolution. Virol. Sin. 23, 438–448 (2008). https://doi.org/10.1007/s12250-008-3003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-008-3003-2

Key words

CLC number

Navigation