Skip to main content
Log in

Application of Box–Behnken Design to Optimize the Osmotic Drug Delivery System of Metoprolol Succinate and its In Vivo Evaluation in Beagle Dogs

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The objective of this study was to develop osmotic pump tablets of metoprolol succinate (MS) using water-soluble pore formers in the semipermeable membrane in place of orifice drilled on the membrane thereby abolishing the shortcomings associated with laser drilling technique. The formulation was optimized for coating variables such as semipermeable membrane level (X 1) and pore former level (X 2) by response surface methodology using Box–Behnken design (BBD) employing design expert software. The developed osmotic pump tablet was found to sustain the drug release up to 20 h at zero-order rate. The pharmacokinetic study in Beagle dogs showed delayed T max and lower C max compared to marketed brand TOPROL XL, indicating a slow and more sustained release behavior of MS from the optimized osmotic tablets in comparison with the existing matrix-based marketed dosage form. Thus, a novel approach for the controlled release of MS from osmotic pump tablets has been successfully developed using BBD, which is valuable for the advancement of controlled drug delivery of other water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deaton C, Froelicher ES, Wu LH, Ho C, Shishani K, Jaarsma T. The global burden of cardiovascular disease. Eur J Cardiovasc Nurs. 2011;10(2 Suppl):S5–13. doi:10.1016/S1474-5151(11)00111-3.

    PubMed  Google Scholar 

  2. Srinath Reddy K, Yusuf S. Emerging epidemic of cardiovascular disease in developing countries. Circulation. 1998;97:596–601.

    Article  Google Scholar 

  3. The atlas of heart disease and stroke, WHO 2014.

  4. Frishman WH, Hainer JW, Sugg J, M-FACT Study Group. A factorial study of combination hypertension treatment with metoprolol succinate extended release and felodipine extended release results of the metoprolol succinate-felodipine antihypertension combination trial (M-FACT). Am J Hypertens. 2006;19(4):388–95.

    Article  CAS  PubMed  Google Scholar 

  5. Gohel MC, Parikh RK, Nagori SA, Jena DG. Fabrication of modified release tablet formulation of metoprolol succinate using hydroxypropyl methylcellulose and xanthan gum. AAPS PharmSciTech. 2009;10(1):62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sandberg A, Ragnarsson G, Jonsson UE, et al. Design of a new multiple-unit controlled-release formulation of metoprolol—metoprolol CR. Eur J Clin Pharmacol. 1988;33:S3–7.

    Article  CAS  PubMed  Google Scholar 

  7. Theeuwes F. Drug delivery systems. Pharmacol Ther. 1981;13:149–91.

    Article  CAS  PubMed  Google Scholar 

  8. Eckenhoff B, Theeuwes F, Urquhart J. Osmotically activated dosage forms for rate controlled drug delivery. Pharm Technol. 1981;5:35–44.

    CAS  Google Scholar 

  9. Eckenhoff B, Yum SI. The osmotic pump; novel research tool for optimizing drug regimens. Biomaterials. 1981;2:89–97.

    Article  CAS  PubMed  Google Scholar 

  10. Bindschaedler C, Gurny R, Doelker E. Osmotically controlled drug delivery systems produced from organic solutions and aqueous dispersions of cellulose acetate. J Control Release. 1986;4:203–12.

    Article  CAS  Google Scholar 

  11. Verma RK, Mishra B, Garg S. Osmotically controlled oral drug delivery. Drug Dev Ind Pharm. 2000;26:695–708.

    Article  CAS  PubMed  Google Scholar 

  12. Verma RK, Krishna DM, Garg S. Formulation aspects in the developments of osmotically controlled oral drug delivery system. J Control Release. 2002;79:7–27.

    Article  CAS  PubMed  Google Scholar 

  13. Patel J. Evaluation and development of osmotic drug delivery of venlafaxine hydrochloride tablet. Asian J Pharm Res. 2013;3(2):89–97.

    Google Scholar 

  14. Santus G, Baker RW. Osmotic drug delivery: a review of the patent literature. J Control Release. 1995;35:1–21.

    Article  CAS  Google Scholar 

  15. Jiang H, Wang J. Controlled porosity osmotic pump tablet of high permeable drugs and the preparation method thereof. EP Patent 2085078 A1, 5 August 2009.

  16. Haslam JL, Rork GS. Controlled porosity osmotic pump. US Patent 4880631, 14 November 1989.

  17. Kumar P, Singh S, Rajnikanth PS, Mishra B. An overview of osmotic pressure controlled release oral formulation. J Pharm Res. 2006;5:34–45.

    Google Scholar 

  18. Ghosh T, Ghosh A. Drug delivery through osmotic systems—an overview. J Appl Pharm Sci. 2011;01(02):38–49.

    Google Scholar 

  19. Ragonese R, Macka M, Hughes J, Petocz P. The use of Box–Behnken experimental design in the optimization and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in pharmaceutical formulation. J Pharm Biomed Anal. 2002;27:995–1007.

    Article  CAS  PubMed  Google Scholar 

  20. Montgomery DC. Design and Analysis of Experiments. 3rd ed. New York: Wiley; 1991.

    Google Scholar 

  21. Kincl M, Turk S, Vrecer F. Application of experimental design methodology in development and optimization of drug release method. Int J Pharm. 2005;291:39–49.

    Article  CAS  PubMed  Google Scholar 

  22. Keraliya RA, Patel C, Patel P, Keraliya V, Soni TG, Patel RC, Patel MM. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012;1–9. doi:10.5402/2012/528079.

  23. Guo JH. Effects of plasticizers on water permeation and mechanical properties of cellulose acetate: antiplasticization in slightly plasticized polymer. Drug Dev Ind Pharm. 1993;19(13):1541–55.

    Article  CAS  Google Scholar 

  24. Kim MS, Kim JS, You YH, Park HJ, Lee S, Park JS, et al. Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology. Int J Pharm. 2007;341:97–104.

    Article  CAS  PubMed  Google Scholar 

  25. Kim MS, Kim JS, Lee S, Jun SW, Park JS, Woo JS, et al. Optimization of tamsulosin hydrochloride controlled release pellets coated with Surelease and neutralized HPMCP. J Pharm Pharmacol. 2006;58:1611–6.

    Article  CAS  PubMed  Google Scholar 

  26. The United State Pharmacopoeia 37-National Formulary 32, United States Pharmacopeial Convention, 2014.

  27. Wani TA, Ahmad A, Zargar S, Khalil NY, Darwish IA. Use of response surface methodology for development of new microwell-based spectrophotometric method for determination of atrovastatin calcium in tablets. Chem Cent J. 2012;6:134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh B, Chakkal SK, Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS PharmSciTech. 2006;7(1):E19–28.

    Article  PubMed Central  Google Scholar 

  29. Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using "design 732 of experiments" Part 1: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22:27–106.

    Article  CAS  PubMed  Google Scholar 

  30. Baumgartner S, Kristl J, Vrecer F, Vodopivec P, Zorko B. Optimization of floating matrix tablets and evaluation of their gastric residence time. Int J Pharm. 2000;195:125–35.

    Article  CAS  PubMed  Google Scholar 

  31. Moore JW, Flanner HH. Mathematical Comparison of curves with an emphasis on in vitro dissolution profiles. Pharm Technol. 1996;20(6):64–74.

    Google Scholar 

  32. Costa P, Lobo JMS. Modelling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee A, Verma PR, Gore S. Controlled porosity solubility modulated osmotic pump tablets of gliclazide. AAPS PharmSciTech. 2015;16(3):554–68. doi:10.1208/s12249-014-0246-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumaravelrajan R, Narayanan N, Suba V. Development and evaluation of controlled porosity osmotic pump for nifedipine and metoprolol combination. Lipids Health Dis. 2011;10:51. doi:10.1186/1476-511X-10-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verma RK, Kaushal AM, Garg S. Development and evaluation of extended release formulations of isosorbide mononitrate based on osmotic technology. Int J Pharm. 2003;263:9–24.

    Article  CAS  PubMed  Google Scholar 

  36. Schultz P, Kleinebudde CK. A new multiparticulate delayed release system. Part I: dissolution properties and release mechanism. J Control Release. 1997;47(2):181–9.

    Article  CAS  Google Scholar 

  37. Rathore GS, Gupta RN. Formulation development and evaluation of controlled porosity osmotic pump delivery system for oral delivery of atenolol. Asian J Pharm 151–60.

  38. International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceutical for Human Use. ICH harmonized tripartite guideline stability testing of new drug substances and products Q1A (R2). Available from: URL: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step4/Q1A_R2_Guideline.pdf, 2003.

  39. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Available from: URL: http://www.fda.gov/downloads/Drugs/…/Guidances/UCM078932.pdf, 2005.

  40. Wang Y, Yang J, Qian Y, Yang M, Qiu Y, Huang W, Shan L, Gao C. Novel ethylcellulose-coated pellets for controlled release of metoprolol succinate without lag phase: characterization, optimization and in vivo evaluation. Drug Dev Ind Pharm. 2014;1–10. doi: 10.3109/03639045.2014.931969.

  41. Dragomiroiu GTAB, Cimpoieşu A, Ginghina O, Baloescu C, Barca M, Popa DE, et al. The development and validation of a rapid HPLC method for determination of piroxicam. Farmacia. 2015;63:123–31.

    CAS  Google Scholar 

  42. Patel GM, Patel JD. Single core osmotic pump (SCOP): development of single layer osmotic controlled release tablet for poorly soluble drug. J Pharm Technol Drug Res. 2012:1–15.

  43. Pandey P, Pandey S. Delivery of poorly water soluble drugs from swellable elementary osmotic pump and effect of formulation variables. Turk J Pharm Sci. 2013;10:221–36.

    CAS  Google Scholar 

  44. Patel H, Patel MM. Formulation and evaluation of controlled porosity osmotic drug delivery system of carvedilol phosphate. J Pharm Sci Biosci Res. 2012;2(2):77–82.

    Google Scholar 

  45. Singh B, Garg B, Chaturvedi SC, Arora S, Mandsaurwale R, Kapil R, et al. Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends. J Pharm Pharmacol. 2012;64(5):654–69. doi:10.1111/j.2042-7158.2011.01442.

    Article  CAS  PubMed  Google Scholar 

  46. Barkas F, Liberopoulos E, Kei A. Electrolyte and acid–base disorders in inflammatory bowel disease. Ann Gastroenterol. 2012;26:23.

    Google Scholar 

  47. Diana MJ. Practical gastric physiology. Br J Anaesth. 2009;9:173–7.

    Google Scholar 

  48. Shah KU, Khan GM. Regulating drug release behavior and kinetics from matrix tablets based on fine particle-sized ethyl cellulose ether derivatives: an in vitro and in vivo evaluation. Sci World J. 2012;842348. doi:10.1100/2012/842348.

  49. Makhija SN, Vavia PR. Controlled porosity osmotic pump based controlled release systems of pseudoephedrine I. Cellulose acetate as a semipermeable membrane. J Control Release. 2003;89:5–18.

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Xu X. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet. Int J Pharm. 2008;352:225–30.

    Article  CAS  PubMed  Google Scholar 

  51. Zentner GM, Rork GS, Himmelstein KJ. The controlled porosity osmotic pump. J Control Release. 1985;1(3):269–82.

    Article  CAS  Google Scholar 

  52. Appel LE, Zentner GM. Use of modified ethyl cellulose lattices for microporous coating of osmotic tablets. Pharm Res. 1991;8(5):600–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Banerjee would like to acknowledge Mylan Labs, India, for providing facilities and resources to carry out the research work. The authors are also thankful to Dr. Rishi Kapil for providing valuable inputs during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Verma, P.R.P. & Gore, S. Application of Box–Behnken Design to Optimize the Osmotic Drug Delivery System of Metoprolol Succinate and its In Vivo Evaluation in Beagle Dogs. J Pharm Innov 11, 120–133 (2016). https://doi.org/10.1007/s12247-016-9245-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9245-x

Keywords

Navigation