Skip to main content
Log in

Predictive Modeling for Pharmaceutical Processes Using Kriging and Response Surface

  • Process Design, Optimization, Automation, and Control
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Powder feeding is a fundamental unit operation in the pharmaceutical industry. For the cases in which first-principle process models are unknown, such as when new powder mixture feeding operations are being evaluated, or no longer accurately describe current operating behavior, surrogate model-based approaches can be employed in order to quantify input–output behavior. In this work, two such metamodeling techniques—kriging and response surface methods—are used to predict a loss-in-weight feeder unit’s flow variability in terms of unit flowability and feed rate. Based on a comparison of predicted with experimental values, an iteratively constructed kriging model is found to more accurately capture the feeder system behavior compared with the response surface methodology. Although feeders are used as a case study in this paper, the kriging methodology is general to address other processes where first-principle models are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Francis TM, Gump CJ, Weimer AW. Spinning wheel powder feeding device—fundamentals and applications. Powder Technol. 2006;170:36–44.

    Article  CAS  Google Scholar 

  2. Gundogdu MY. Design improvements on rotary valve particle feeders used for obtaining suspended airflows. Powder Technol. 2004;139:76–80.

    Article  CAS  Google Scholar 

  3. Kehlenbeck V, Sommer K. Possibilities to improve the short term dosing constancy of volumetric feeders. Powder Technol. 2003;138:51–6.

    Article  CAS  Google Scholar 

  4. Reist PC, Taylor L. Development and operation of an improved turntable dust feeder. Powder Technol. 2000;107:36–42.

    Article  CAS  Google Scholar 

  5. McKenzie P, Kiang S, Tom J, Rubin AE, Futran M. Can pharmaceutical process development become high tech? AICHE J. 2006;52:3990–4.

    Article  CAS  Google Scholar 

  6. Jaeger HM, Nagel S. Physics of the granular state. Science. 1992;256:1523.

    Article  Google Scholar 

  7. Pan H, Landers RG, Liou F. Dynamic modeling of powder delivery systems in gravity-fed powder feeders. J Manuf Sci Eng. 2006;128:337–45.

    Article  Google Scholar 

  8. Reed AR, Bradley MS, Pittman AN. The characteristics of rotary feeders used for flow control of particulate materials. Proc Inst Mech Eng, E. 2000;214:43–52.

    Article  Google Scholar 

  9. Yu Y, Arnold PC. The influence of screw feeders on bin flow patterns. Powder Technol. 1996;88:81–7.

    Article  CAS  Google Scholar 

  10. Box G, Hunter S, Hunter WG. Statistics for experimenters. Design, innovation, and discovery. 2nd ed. New York: Wiley-Interscience; 2005.

    Google Scholar 

  11. Santner T, Williams B, Notz W. The design and analysis of computer experiments. New York: Springer; 2003.

    Google Scholar 

  12. Cressie N. Statistics for spatial data. New York: Wiley; 1993.

    Google Scholar 

  13. Sacks J, Schilller SB, Welch WJ. Designs for computer experiments. Technometrics. 1989;31:41–7.

    Article  Google Scholar 

  14. Davis E, Ierapetritou MG. A Kriging method for the solution of nonlinear programs with black-box functions. AICHE J. 2007;53:2001–12.

    Article  CAS  Google Scholar 

  15. Davis E, Ierapetritou M. A Kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions. J Glob Opt. 2008;43:191–205.

    Article  Google Scholar 

  16. Davis E, Ierapetritou M. A kriging-based approach to MINLP containing black-box models and noise. Ind Eng Chem Res. 2008;47:6101–25.

    Article  CAS  Google Scholar 

  17. Davis E, Ierapetritou M. A centroid-based sampling strategy for kriging global modeling and optimization. AIChE J. 2009. doi:10.1002/aic.11881.

  18. Krige D. a statistical approach to some mine valuations and allied problems at the Witwatersrand. Master’s thesis. University of Witwatersrand, Johannesburg; 1951.

  19. Goovaaerts P. Geostatisics for natural resources evolution. New York: Oxford University Press; 1997.

    Google Scholar 

  20. Matheron G. Principles of geostatistics. Econ Geol. 1963;58:1246–66.

    Article  CAS  Google Scholar 

  21. Isaaks E, Srivistava R. Applied geostatistics. New York: Oxford University Press; 1989.

    Google Scholar 

  22. Box G, Wilson K. On the experimental attainment of optimum conditions. J R Stat Soc Ser B. 1951;13:1–45.

    Google Scholar 

  23. Myers R, Montgomery D. Response surface methodology. New York: Wiley; 2002.

    Google Scholar 

  24. Jones D. A taxonomy of global optimization methods based on response surfaces. J Global Optim. 2001;21:345–83.

    Article  Google Scholar 

  25. Jones D, Schonlau M, Welch W. Efficient global optimization of expensive black-box functions. J Global Optim. 1998;13:455–92.

    Article  Google Scholar 

  26. Regis R, Shoemaker C. Constrained global optimization of expensive black box functions using radial basis functions. J Glob Opt. 2005;31:153.

    Article  Google Scholar 

  27. Alexander AW, Chaudhuri B, Faqih A, Muzzio FJ, Davies C, Tomassone MS. Avalanching flow of cohesive powders. Powder Technol. 2006;164(1):13–21.

    Article  CAS  Google Scholar 

  28. Chaudhuri B, Mehrotra A, Muzzio FJ, Tomassone MS. Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 2006;165(2):105–14.

    Article  CAS  Google Scholar 

  29. Faqih A, Chaudhuri B, Alexander AWA, Hammond S, Muzzio FJ, Tomassone MS. Flow- induced dilation of cohesive granular materials. AICHE J. 2006;52:4124–32.

    Article  CAS  Google Scholar 

  30. Portillo PM, Muzzio FJ, Ierapetritou MG. Hybrid DEM-compartment modeling approach for granular mixing. AIChE J. 2007;53:119–28.

    Article  CAS  Google Scholar 

  31. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence; 1995. p. 1137–43.

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided by ERC (NSF EEC-0540855) and experimental data provided by Bill Engisch and Aditya Vanarase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianthi G. Ierapetritou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Davis, E., Muzzio, F.J. et al. Predictive Modeling for Pharmaceutical Processes Using Kriging and Response Surface. J Pharm Innov 4, 174–186 (2009). https://doi.org/10.1007/s12247-009-9070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-009-9070-6

Keywords

Navigation