Skip to main content

Statistical Methods in Quality by Design and Process Analytical Technologies for Continuous Processes to Enable Real-Time Release

  • Chapter
  • First Online:
Continuous Pharmaceutical Processing

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 42))

Abstract

The large data sets obtained in real-time monitoring of batch and continuous manufacturing processes require statistical methods to extract information on the state of critical process parameters and quality attributes. This chapter presents useful statistical methods such as design of experiments (DoE), principal component analysis (PCA), and partial least squares (PLS) regression for monitoring both physical and chemical properties in pharmaceuticals. A discussion of variographic analysis is also included, presenting a promising method to evaluate the mixing of pharmaceutical formulations and address sampling errors. This chapter also presents statistical methods that are currently used to improve both batch and continuous processes. These methods are now used in commercial manufacturing of pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo D, Muliadi A, Giridhar A, Litster JD, Romanach RJ. Evaluation of three approaches for real-time monitoring of roller compaction with near-infrared spectroscopy. AAPS PharmSciTech. 2012;13(3):1005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agaian S. Hadamard matrices and their applications. Heidelberg: Springer; 1985.

    Book  Google Scholar 

  • Aksu B, Beer TD, Folestad S, Ketolainen J, Lindén H, Lopes JA, et al. Strategic funding priorities in the pharmaceutical sciences allied to Quality by Design (QbD) and Process Analytical Technology (PAT). Eur J Pharm Sci. 2012;47(2):402–5.

    Article  CAS  PubMed  Google Scholar 

  • Alcala M, Blanco M, Bautista M, Gonzalez JM. On-line monitoring of A granulation process by NIR spectroscopy. J Pharm Sci. 2010;99(1):336–45.

    Article  CAS  PubMed  Google Scholar 

  • Alcalà M, Blanco M, Menezes JC, Felizardo PM, Garrido A, Pérez D, et al. Near-infrared spectroscopy in laboratory and process analysis. Encyclopedia of analytical chemistry: Wiley; Hoboken, New Jersey, USA; 2012.

    Google Scholar 

  • Barajas MJ, Cassiani AR, Vargas W, Conce C, Ropero J, Figueroa J, et al. Near-infrared spectroscopic method for real-time monitoring of pharmaceutical powders during voiding. Appl Spectrosc. 2007;61(5):490–6.

    Article  CAS  PubMed  Google Scholar 

  • Beach L, Ropero J, Mujumdar A, Alcalà M, Romañach RJ, Davé RN. Near-infrared spectroscopy for the in-line characterization of powder voiding part II: quantification of enhanced flow properties of surface modified active pharmaceutical ingredients. J Pharm Innov. 2010;5(1–2):1–13.

    Article  Google Scholar 

  • Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: a practical guide: John Wiley & Sons, Hoboken, New Jersey, USA; 1998. 360 p.

    Google Scholar 

  • Berntsson O, Danielsson LG, Folestad S. Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry. Anal Chim Acta. 1998;364:243–51.

    Article  CAS  Google Scholar 

  • Blanco M, Bautista M, Alcala M. Preparing calibration sets for use in pharmaceutical analysis by NIR spectroscopy. J Pharm Sci. 2008;97(3):1236–45.

    Article  CAS  PubMed  Google Scholar 

  • Bondi RW, Drennen JK. Quality by design and the importance of PAT in QbD. Sep Sci Technol. 2011;10:195–224.

    Google Scholar 

  • Bondi RW Jr, Igne B, Drennen JK 3rd, Anderson CA. Effect of experimental design on the prediction performance of calibration models based on near-infrared spectroscopy for pharmaceutical applications. Appl Spectrosc. 2012;66(12):1442–53.

    Article  CAS  PubMed  Google Scholar 

  • Boodoosingh GL, Lopez GE. An efficient algorithm in the grand canonical ensemble: constructing adsorption isotherms. Mol Simul. 2002;28(3):273–85.

    Google Scholar 

  • Box G, Draper N. Practical choice of a response design. Response surfaces, mixtures, and ridge analysis: John Wiley & Sons, Hoboken, New Jerse; 2006. p. 483–508.

    Google Scholar 

  • Box G, Hunter J, Hunter W. Statistics for experimenters: design, innovation, and discovery. 2nd ed. New Jersey: Wiley-Interscience; 2005.

    Google Scholar 

  • Callis J, Illman D, Kowalski B. Process analytical chemistry. Anal Chem. 1987;59(9):624A–37A.

    Google Scholar 

  • Cárdenas V, Romañach RJ. Determining the number of significant figures for reporting NIR results. NIR news. 2018;29(4):15–17.

    Google Scholar 

  • Càrdenas V, Blanco M, Alcalà M. Strategies for selecting the calibration set in pharmaceutical near infrared spectroscopy analysis. A Comparative Study. J Pharm Innov. 2014;9(4):272–81.

    Article  Google Scholar 

  • Cogdill RP, Delgado-Lopez M, Molseed D, Chisholm R, Bolton R, Herkert T, Afnán A, Drennen J. Process analytical technology case study part I: feasibility studies for quantitative near-infrared method development. AAPS PharmSciTech. 2005;6(2):E363–272.

    Google Scholar 

  • Colón YM, Florian MA, Acevedo D, Méndez R, Romañach RJ. Near infrared method development for a continuous manufacturing blending process. J Pharm Innov. 2014;9(4):291–301.

    Article  Google Scholar 

  • Dahm D, Dahm K. Interpreting diffuse reflectance and transmittance: a theoretical introduction to absorption spectroscopy of scattering materials: NIR Publications; Chichester, West Sussex, United Kingdom; 2007.

    Google Scholar 

  • de Matas M, De Beer T, Folestad S, Ketolainen J, Lindén H, Lopes JA, et al. Strategic framework for education and training in Quality by Design (QbD) and process analytical technology (PAT). Eur J Pharm Sci. 2016;90:2–7.

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Scicolone J, Han X, Davé RN. Discrete element method simulation of a conical screen mill: a continuous dry coating device. Chem Eng Sci. 2015;125:58–74.

    Article  CAS  Google Scholar 

  • Doehlert D. Uniform shell design. Applied Stat. 1970;19:231–9.

    Article  Google Scholar 

  • El Hagrasy A, Chang SY, Desai D, Kiang S. Raman spectroscopy for the determination of coating uniformity of tablets- assessment of product quality and coating pan mixing efficiency during scale-up. J Pharm Innov. 2006;1(1):37–42.

    Article  Google Scholar 

  • Engisch W, Muzzio F. Using Residence Time Distributions (RTDs) to address the traceability of raw materials in continuous pharmaceutical manufacturing. J Pharm Innov. 2016;11:64–81.

    Article  PubMed  Google Scholar 

  • Eriksson LJE, Kettaneh-Wold N, Wikstrom C, Wold S. Design of experiments-Principles and applications. 3nd ed. Sweden: Umea; 2008.

    Google Scholar 

  • Esbensen K, Geladi P. Principal component analysis: concept, geometrical interpretation, mathematical background, algorithm, history, practice. In: SDBT W, editor. Comprehensive chemometrics. Oxford: Elsevier; 2009. p. 211–26.

    Chapter  Google Scholar 

  • Esbensen KH, Geladi P. Principles of proper validation: use and abuse of re-sampling for validation. J Chemom. 2010;24(3–4):168–87.

    Article  CAS  Google Scholar 

  • Esbensen KH, Paasch-Mortensen P. Process Sampling: Theory of Sampling – the Missing Link in Process Analytical Technologies (PAT). In: Bakeev K, editor. Process Analytical Technology. Chichester, West Sussex, United Kingdom: John Wiley & Sons, Ltd; 2010. p. 37–80.

    Google Scholar 

  • Esbensen KE, Swarbrick B. Multivariate Data Analysis – in practice. An Introduction Multivariate Analysis, Process Analytical Technology and Quality by Design. 6th ed. Oslo, Norway: CAMO Software AS; 2018. 480 p.

    Google Scholar 

  • Esbensen KH, Roman-Ospino AD, Sanchez A, Romanach RJ. Adequacy and verifiability of pharmaceutical mixtures and dose units by variographic analysis (Theory of Sampling) – a call for a regulatory paradigm shift. Int J Pharm. 2016;499(1–2):156–74.

    Article  CAS  PubMed  Google Scholar 

  • European Medicine Agency E. Guideline on the use of near infrared spectroscopyby the pharmaceutical industry and the data requirements for new submissions and variations; 2014.

    Google Scholar 

  • Fontalvo-Gomez M, Colucci JA, Velez N, Romanach RJ. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction. Appl Spectrosc. 2013;67(10):1142–9.

    Article  CAS  PubMed  Google Scholar 

  • Fonteyne M, Vercruysse J, De Leersnyder F, Van Snick B, Vervaet C, Remon JP, et al. Process analytical technology for continuous manufacturing of solid-dosage forms. TrAC Trends Anal Chem. 2015;67:159–66.

    Article  CAS  Google Scholar 

  • Gao Y, Boukouvala F, Engisch W, Meng W, Muzzio FJ, Ierapetritou MG. Improving continuous powder blending performance using projection to latent structures regression. J Pharm Innov. 2013;8(2):99–110.

    Article  Google Scholar 

  • Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17.

    Article  CAS  Google Scholar 

  • Goupy J, Creighton L. Introduction to design of experiments with JMP examples: SAS press, Houghton, Johannesburg; 2007.

    Google Scholar 

  • Green RL, Thurau G, Pixley NC, Mateos A, Reed RA, JP H. In-line monitoring of moisture content in fluid bed dryers using near-IR spectroscopy with consideration of sampling effects on method accuracy. Anal Chem. 2005;77(14):4515–22.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PR, de Haseth JA. Fourier transform infrared spectrometry. 2nd ed; 2007. 560 p.

    Book  Google Scholar 

  • Hernandez E, Pawar P, Keyvan G, Wang Y, Velez N, Callegari G, et al. Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strain. J Pharm Biomed Anal. 2016a;117:568–76.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez E, Pawar P, Rodriguez S, Lysenko S, Muzzio FJ, Romanach RJ. Effect of shear applied during a pharmaceutical process on near infrared spectra. Appl Spectrosc. 2016b;70(3):455–66.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liang JK, Myerson AS, Taylor LS. Crystallization monitoring by Raman spectroscopy- simultaneous measurement of desupersaturation profile and polymorphic form in flufenamic acid systems. Ind Eng Chem Res. 2005;44(5):1233–40.

    Article  CAS  Google Scholar 

  • Huang Z, Scicolone JV, Han X, Dave RN. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Int J Pharm. 2015;478(2):447–55.

    Article  CAS  PubMed  Google Scholar 

  • Hussain A. interviewed by Rodolfo Romañach [Personal communication] Greenville, NC; 2015.

    Google Scholar 

  • Jackson J. A User’s guide to principal components: Wiley Interscience, Hoboken, New Jersey, USA; 2004.

    Google Scholar 

  • Joglekar GS, Giridhar A, Reklaitis G. A workflow modeling system for capturing data provenance. Comput Chem Eng. 2014;67:148–58.

    Article  CAS  Google Scholar 

  • Kramer R. Chemometric techniques for quantitative analysis: Taylor & Francis, New York, NY; 1998.

    Google Scholar 

  • Kumar N, Bansal A, Sarma GS, Rawal RK. Chemometrics tools used in analytical chemistry: an overview. Talanta. 2014;123:186–99.

    Article  CAS  PubMed  Google Scholar 

  • Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. 2015;10(3):191–9.

    Article  Google Scholar 

  • Mark H. Principles and Practice of Spectroscopic Calibration. New York, NY: Wiley; 1991.

    Google Scholar 

  • Markl D, Wahl PR, Menezes JC, Koller DM, Kavsek B, Francois K, et al. Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech. 2013;14(3):1034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez L, Peinado A, Liesum L, Betz G. Use of near-infrared spectroscopy to quantify drug content on a continuous blending process: influence of mass flow and rotation speed variations. Eur J Pharm Biopharm. 2013;84(3):606–15.

    Article  CAS  PubMed  Google Scholar 

  • Massart DL. In: Massart DL, editor. Handbook of Chemometrics and Qualimetrics Part A; Elsevier Science, Amsterdam, The Netherlands; 1997. p. 26.

    Google Scholar 

  • Mateo-Ortiz D, Colon Y, Romanach RJ, Mendez R. Analysis of powder phenomena inside a Fette 3090 feed frame using in-line NIR spectroscopy. J Pharm Biomed Anal. 2014;100:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Mercado J, Alcalà M, Karry KM, Ríos-Steiner JL, Romañach RJ. Design and in-line Raman spectroscopic monitoring of a protein batch crystallization process. J Pharm Innov. 2008;3(4):271–9.

    Article  Google Scholar 

  • Miller CE. Chemometrics for on-line spectroscopy applications—theory and practice. J Chemom. 2000;14(5–6):513–28.

    Article  CAS  Google Scholar 

  • Miller CE. Chemometrics in process analytical technology (PAT). In: Bakeev KA, editor. Process Analytical Technology. Second ed. Chichester, West Sussex, United Kingdom: John Wiley & Sons, Ltd; 2010. p. 353–438.

    Google Scholar 

  • Moghtadernejad S, Escotet-Espinoza MS, Oka S, Singh R, Liu Z, Román-Ospino AD, et al. A training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical products. J Pharm Innov. 2018;13(2):155–187.

    Google Scholar 

  • Næs T, Isaksson T, Fearn T, Davies T. A User-Friendly Guide to Multivariate Calibration and Classification. Chichester, West Sussex: NIR Publications; 2002. 344 p.

    Google Scholar 

  • Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics. 1995;37(1):41–59.

    Article  Google Scholar 

  • Osorio JG, Vanarase AU, Romañach RJ, Muzzio FJ. Continuous powder mixing. Pharmaceutical blending and mixing: John Wiley & Sons, Chichester, West Sussex, United Kingdom; 2015. p. 101–27.

    Google Scholar 

  • Pawar P, Wang Y, Keyvan G, Callegari G, Cuitino A, Muzzio F. Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC). Int J Pharm. 2016;512(1):96–107.

    Article  CAS  PubMed  Google Scholar 

  • Pell RJ, Seasholtz MB, Beebe KR, Koch MV. Process analytical chemistry and chemometrics, Bruce Kowalski’s legacy at The Dow Chemical Company. J Chemom. 2014;28(5):321–31.

    Article  CAS  Google Scholar 

  • Petersen L, Esbensen KH. Representative process sampling for reliable data analysis—a tutorial. J Chemometr. 2005;19(11–12):625–47.

    Article  CAS  Google Scholar 

  • Pharmaceutical Quality System. Technical requirements for registration of pharmaceuticals for human use. 2009.

    Google Scholar 

  • Quality Risk Management. Technical requirements for registration of pharmaceuticals for human use; 2006.

    Google Scholar 

  • Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci. 2015;104(11):3612–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rantanen J, Wikström H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77(2):556–63.

    Article  CAS  PubMed  Google Scholar 

  • Reklaitis GV, Khinast J, Muzzio F. Pharmaceutical engineering science—new approaches to pharmaceutical development and manufacturing. Chem Eng Sci. 2010;65(21):iv–vii.

    Article  Google Scholar 

  • Rogers A, Ierapetritou M. Challenges and opportunities in modeling pharmaceutical manufacturing processes. Comput Chem Eng. 2015;81:32–9.

    Article  CAS  Google Scholar 

  • Rogers A, Ierapetritou MG. Mathematical tools for the quantitative definition of a design space. In: Ierapetritou GM, Ramachandran R, editors. Process simulation and data modeling in solid oral drug development and manufacture. New York, NY: Springer; 2016. p. 225–79.

    Chapter  Google Scholar 

  • Romañach RJ. Theory of sampling - from missing link to key enabler for process analytical technology (PAT). In: Dominy SC, Esbensen KH, editors. World conference on sampling and blending; May 9–11, 2017. 8th ed. Perth: Australian Institute of Mining and Metallurgy; 2017. p. 63–8.

    Google Scholar 

  • Romañach R, Esbensen K. Sampling in pharmaceutical manufacturing—many opportunities to improve today’s practice through the theory of sampling (TOS). TOS Forum. 2015;2015(4):5.

    Article  Google Scholar 

  • Romañach RJ, Hernández Torres E, Roman Ospino A, Pastrana I, Semidei F. NIR and Raman spectroscopic measurements to train the next generation of PAT scientists. Am Pharm Rev. 2014;17(6):82–7.

    Google Scholar 

  • Romañach RJ, Román-Ospino AD, Alcalà M. A procedure for developing quantitative near infrared (NIR) methods for pharmaceutical products. In: Ierapetritou MG, Ramachandran R, editors. Process simulation and data modeling in solid oral drug development and manufacture. Methods in pharmacology and toxicology. New York: Springer; 2016. p. 133–58.

    Google Scholar 

  • Romañach RJ, Sanchez-Paternina A, Esbensen KH. Variographic analysis of 1-D lots in pharmaceutical manufacturing (powder mixing). Am Pharm Rev. 2018;21(1):22–6.

    Google Scholar 

  • Roman-Ospino AD, Singh R, Ierapetritou M, Ramachandran R, Mendez R, Ortega-Zuniga C, et al. Near infrared spectroscopic calibration models for real time monitoring of powder density. Int J Pharm. 2016;512(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Torres S, Perez-Ramos JD, Morris KR, Grant ER. Raman spectroscopic measurement of tablet-to-tablet coating variability. J Pharm Biomed Anal. 2005;38(2):270–4.

    Article  CAS  PubMed  Google Scholar 

  • Romero-Torres S, Perez-Ramos JD, Morris KR, Grant ER. Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference. J Pharm Biomed Anal. 2006;41(3):811–9.

    Article  CAS  PubMed  Google Scholar 

  • Ropero J, Beach L, Alcalà M, Rentas R, Davé RN, Romañach RJ. Near-infrared spectroscopy for the in-line characterization of powder voiding part I: development of the methodology. J Pharm Innov. 2009;4(4):187–97.

    Article  Google Scholar 

  • Rosas JG, Blanco M, Gonzalez JM, Alcala M. Quality by design approach of a pharmaceutical gel manufacturing process, part 2: near infrared monitoring of composition and physical parameters. J Pharm Sci. 2011a;100(10):4442–51.

    Article  CAS  PubMed  Google Scholar 

  • Rosas JG, Blanco M, Gonzalez JM, Alcala M. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: determination of the design space. J Pharm Sci. 2011b;100(10):4432–41.

    Article  CAS  PubMed  Google Scholar 

  • Rozo JI, Zarow A, Zhou B, Pinal R, Iqbal Z, Romanach RJ. Complementary near-infrared and Raman chemical imaging of pharmaceutical thin films. J Pharm Sci. 2011;100(11):4888–95.

    Article  PubMed  CAS  Google Scholar 

  • Saerens L, Dierickx L, Quinten T, Adriaensens P, Carleer R, Vervaet C, et al. In-line NIR spectroscopy for the understanding of polymer–drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm. 2012;81(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  • Saerens L, Segher N, Vervaet C, Remon JP, De Beer T. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion. Anal Chim Acta. 2014;806:180–7.

    Article  CAS  PubMed  Google Scholar 

  • Seasholtz MB. Making money with chemometrics. Chemometr Intell Lab Syst. 1999;45(1–2):55–63.

    Article  CAS  Google Scholar 

  • Shinbrot T, Muzzio FJ. Mixing and segregation in tumbling blenders. Encyclopedia of pharmaceutical science and technology. 4th ed: CRC Press, Raton, FL; 2013. p. 2208–21.

    Google Scholar 

  • Sierra-Vega NO, Sánchez-Paternina A, Maldonado N, Cárdenas V, Romañach RJ, Méndez R. In line monitoring of the powder flow behavior and drug content in a Fette 3090 feed frame at different operating conditions using Near Infrared spectroscopy. J Pharm Biomed Anal. 2018;154:384–96.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Ierapetritou M, Ramachandran R. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur J Pharm Biopharm. 2013;85(3 Pt B):1164–82.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sahay A, Karry KM, Muzzio F, Ierapetritou M, Ramachandran R. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant. Int J Pharm. 2014;473(1–2):38–54.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sahay A, Muzzio F, Ierapetritou M, Ramachandran R. A systematic framework for onsite design and implementation of a control system in a continuous tablet manufacturing process. Comput Chem Eng. 2014;66:186–200.

    Google Scholar 

  • Skibsted ET, Westerhuis JA, Smilde AK, Witte DT. Examples of NIR based real time release in tablet manufacturing. J Pharm Biomed Anal. 2007;43(4):1297–305.

    Article  CAS  PubMed  Google Scholar 

  • Smith W. Experimental design for formulation. New York: Pittsford; 2005.

    Book  Google Scholar 

  • Smith E, Dent G. Modern Raman spectroscopy – a practical approach: John Wiley & Sons, Ltd, Chichester, West Sussex, United Kingdom; 2005. p. 1–21.

    Google Scholar 

  • Tabasi SH, Fahmy R, Bensley D, O’Brien C, Hoag SW. Quality by design, part I: application of NIR spectroscopy to monitor tablet manufacturing process. J Pharm Sci. 2008a;97(9):4040–51.

    Article  CAS  PubMed  Google Scholar 

  • Tabasi SH, Fahmy R, Bensley D, O’Brien C, Hoag SW. Quality by design, part II: application of NIR spectroscopy to monitor the coating process for a pharmaceutical sustained release product. J Pharm Sci. 2008b;97(9):4052–66.

    Article  CAS  PubMed  Google Scholar 

  • Tabasi SH, Fahmy R, Bensley D, O’Brien C, Hoag SW. Quality by design, part III: study of curing process of sustained release coated products using NIR spectroscopy. J Pharm Sci. 2008c;97(9):4067–86.

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services FDA. Guidance for industry – PAT a framework for innovative pharmaceutical development, manufacturing, and quality assurance; 2004. pp. 1–19.

    Google Scholar 

  • Vanarase AU, Alcalà M, Jerez Rozo JI, Muzzio FJ, Romañach RJ. Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy. Chem Eng Sci. 2010;65(21):5728–33.

    Article  CAS  Google Scholar 

  • Vargas JM, Roman-Ospino AD, Sanchez E, Romañach RJ. Evaluation of analytical and sampling errors in the prediction of the active pharmaceutical ingredient concentration in blends from a continuous manufacturing process. J Pharm Innov. 2017;12:155–67.

    Article  Google Scholar 

  • Vargas JM, Nielsen S, Cardenas V, Gonzalez A, Aymat EY, Almodovar E, et al. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. Int J Pharm. 2018;538(1–2):167–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wachter JA, Antosz FJ, Berglund KA. An investigation of solvent-mediated polymorphic transformation of progesterone using in situ Raman spectroscopy. Org Process Res Dev. 2000;4(5):391–5.

    Article  CAS  Google Scholar 

  • Wold S, Kettaneh N, Fridén H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometr Intell Lab Syst. 1998;44:331–40.

    Article  CAS  Google Scholar 

  • Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(10):2463.

    Article  CAS  Google Scholar 

  • Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żarów A, Zhou B, Wang X, Pinal R, Iqbal Z. Spectroscopic and X-ray diffraction study of structural disorder in cryomilled and amorphous griseofulvin. Appl Spectrosc. 2011;65(2):135–43.

    Article  CAS  Google Scholar 

  • Zhang J, Ying Y, Pielecha-Safira B, Bilgili E, Ramachandran R, Romanach RJ, et al. Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. Int J Pharm. 2014;475(1–2):428–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Hines P, Borer MW. Moisture determination in hygroscopic drug substances by near infrared spectroscopy. J Pharm Biomed Anal. 1998;17(2):219–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andres Roman Ospino and Dr. James Scicolone for their help with figures in this chapter. This work was funded by the National Science Foundation Engineering Research Center on Structured Organic Particulate Systems, through Grant NSF-ECC 0540855, and the Puerto Rico Science, Technology and Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo J. Romañach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cárdenas, V., Rosas, J.G., Pinzón, C., Romañach, R.J. (2020). Statistical Methods in Quality by Design and Process Analytical Technologies for Continuous Processes to Enable Real-Time Release. In: Nagy, Z., El Hagrasy, A., Litster, J. (eds) Continuous Pharmaceutical Processing. AAPS Advances in the Pharmaceutical Sciences Series, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-41524-2_10

Download citation

Publish with us

Policies and ethics