Skip to main content

Advertisement

Log in

Quantifying the Effects of Commercial Clam Aquaculture on C and N Cycling: an Integrated Ecosystem Approach

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Increased interest in using bivalve cultivation to mitigate eutrophication requires a comprehensive understanding of the net carbon (C) and nitrogen (N) budgets associated with cultivation on an ecosystem scale. This study quantified C and N processes related to clam (Mercenaria mercenaria) aquaculture in a shallow coastal environment (Cherrystone Inlet, VA) where the industry has rapidly increased. Clam physiological rates were compared with basin-wide ecosystem fluxes including primary production, benthic nutrient regeneration, and respiration. Although clam beds occupy only 3 % of the ecosystem’s surface area, clams filtered 7–44 % of the system’s volume daily, consumed an annual average of 103 % of the phytoplankton production, creating a large flux of particulate C and N to the sediments. Annually, N regenerated and C respired by clam and microbial metabolism in clam beds were ∼3- and ∼1.5-fold higher, respectively, than N and C removed through harvest. Due to the short water residence time, the low watershed load, and the close vicinity of clam beds to the mouth of Cherrystone Inlet, cultivated clams are likely subsidized by phytoplankton from the Chesapeake Bay. Consequently, much of the N released by mineralization associated with clam cultivation is “new” N as it would not be present in the system without bivalve facilitation. Macroalgae that are fueled by the enhanced N regeneration from clams represents a eutrophying process resulting from aquaculture. This synthesis demonstrates the importance of considering impacts of bivalve aquaculture in an ecosystem context especially relative to the potential of bivalves to remove nutrients and enhance C sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, Charles M., E. Sandra Shumway, Robert B. Whitlatch, and Tessa Getchis. 2011. Biofouling in marine molluscan shellfish aquaculture: a survey assessing the business and economic implications of mitigation. Journal of the World Aquaculture Society 42: 242–252. Wiley Online Library.

    Article  Google Scholar 

  • Bartoli, M., D. Nizzoli, P. Viaroli, E. Turolla, G. Castaldelli, E.A. Fano, and R. Rossi. 2001. Impact of Tapes philippinarum farming on nutrient dynamics and benthic respiration in the Sacca di Goro. Hydrobiologia 455: 203–212.

    Article  Google Scholar 

  • Bass, A.E., R.E. Malouf, and S.E. Shumway. 1990. Growth of northern quahogs (Mercenaria mercenaria (Linnaeus, 1758)) fed on picoplankton. Journal of Shellfish Research 9(2): 299–307.

    Google Scholar 

  • Bauer, James E., Wei-Jun Cai, Peter A. Raymond, Thomas S. Bianchi, Charles S. Hopkinson, and Pierre A.G. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504: 61–70. doi:10.1038/nature12857.

    Article  CAS  Google Scholar 

  • Bendell, L.I. 2015. Favored use of anti-predator netting (APN) applied for the farming of clams leads to little benefits to industry while increasing nearshore impacts and plastics pollution. Marine Pollution Bulletin 91: 22–28. doi:10.1016/j.marpolbul.2014.12.043. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Beseres, Pollack, Jennifer David Yoskowitz, Kim Hae-Cheol, and Paul A. Montagna. 2013. Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. Edited by Simon Thrush. PLoS ONE 8: e65314. doi:10.1371/journal.pone.0065314.t003.

    Article  Google Scholar 

  • Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. 7.07 Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. Treatise on Estuarine and Coastal Science. Vol. 7. Treatise on Estuarine and Coastal Science. doi:10.1016/B978-0-12-374711-2.00711-7.

  • Bricker, Suzanne B., Karen C. Rice, and Owen P. Bricker. 2014. From headwaters to coast: influence of human activities on water quality of the Potomac River Estuary. Aquatic Geochemistry 20: 291–323. doi:10.1007/s10498-014-9226-y.

    Article  CAS  Google Scholar 

  • Brush, M.J. 2002. Development of a numerical model for shallow marine ecosystems with application to Greenwich Bay, R.I. PhD Dissertation, University of Rhode Island, Kingston, RI, USA.

  • Brush, Mark J., and John W. Brawley. 2009. Adapting the light biomass (BZI) models of phytoplankton primary production to shallow marine ecosystems. Journal of Marine Systems 75: 227–235. doi:10.1016/j.jmarsys.2008.10.003. Elsevier B.V.

    Article  Google Scholar 

  • Brush, M.J., J.W. Brawley, and S.W. Nixon. 2002. Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative. Marine Ecology Progress Series.

  • Cai, Wei-Jun. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145. doi:10.1146/annurev-marine-120709-142723.

    Article  Google Scholar 

  • Carmichael, R., 2004. The effects of eutrophication on Mya arenaria and Mercenaria mercenaria: growth, survival, and physiological responses to changes in food supply and habitat across estuaries receiving different N loads. PhD dissertation, Boston University.

  • Castagna, M. 2001. Aquaculture of the hard clam, Mercenaria mercenaria. In Biology of the hard clam, ed. J.N. Kraeuter and M. Castagna, 675–697. The Netherlands: Elsevier Science B.V. Amsterdam.

    Chapter  Google Scholar 

  • CBP. 2012. Chesapeake Bay program data hub. http://www.chesapeakebay.net/data#downloads (Accessed 29 May 2013).

  • Chauvaud, L., J.K. Thompson, and J.E. Cloern. 2003. Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol. Oceanogr.

  • Cloern, James E. 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay. Marine Ecology Progress Series 9: 191–202.

    Article  Google Scholar 

  • Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1367–1381.

    Article  Google Scholar 

  • Cohen, Ronald R.H., Paul V. Dresler, Elizabeth J.P. Phillips, and Robert L. Cory. 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.

    Article  Google Scholar 

  • Condon, Elizabeth Darrow. 2005. Physiological ecology of the cultured hard clam, Mercenaria mercenaria: a case study in Cherrystone Inlet, Virginia. MS Thesis, College of William and Mary, Williamsburg, VA.

  • Cranford, P.J., P.M. Strain, M. Dowd, B.T. Hargrave, J. Grant, and M. Archambault. 2007. Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Marine Ecology Progress Series 347: 61–78.

    Article  CAS  Google Scholar 

  • Dame, R.F. 2011. Ecology of marine bivalves: an ecosystem approach, second edition.

  • Dame, Richard F., and Theo C. Prins. 1998. Bivalve carrying capacity in coastal ecosystems. Aquatic Ecology 31: 409–421.

    Article  Google Scholar 

  • Doering, P.H., and C.A. Oviatt. 1986. Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms. Marine Ecology Progress Series 31: 265–275.

    Article  Google Scholar 

  • Doering, P.H., J.R. Kelly, C.A. Oviatt, and T. Sowers. 1987. Effect of the hard clam Mercenaria mercenaria on benthic fluxes of inorganic nutrients and gases. Marine Biology 94: 377–383. Springer.

    Article  CAS  Google Scholar 

  • Doney, Scott C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328: 1512–1516. doi:10.1126/science.1185198.

    Article  CAS  Google Scholar 

  • Dumbauld, Brett R., Jennifer L. Ruesink, and Steven S. Rumrill. 2009. The ecological role of bivalve shellfish aquaculture in the estuarine environment: a review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture 290: 196–223. Elsevier.

    Article  Google Scholar 

  • Emery, Kyle A. 2015. Coastal bivalve aquaculture carbon cycling, spatial distribution and resource use in Virginia, USA and Baja California, Mexico. MS Thesis, University of Virginia, Charlottesville, Virginia, USA.

  • Emery, Kyle A, Grace M Wilkinson, Victor F Camacho-Ibar, Michael L Pace, Karen J McGlathery, Jose M Sandoval-Gil, and Julieta Hernández-López. 2015. Resource use of an aquacultured oyster (Crassostrea gigas) in the reverse estuary Bahia San Quintin, Baja California, Mexico. Estuaries and Coasts. Estuaries and Coasts: 1–9. doi:10.1007/s12237-015-0021-9.

  • FAO. 2014. The state of world fisheries and aquaculture. Food and Agriculture Organizationo f the United Nations: 1–243.

  • Ferreira, J.G., A.J.S. Hawkins, and S.B. Bricker. 2007. Management of productivity, environmental effects and profitability of shellfish aquaculture—the Farm Aquaculture Resource Management (FARM) model. Aquaculture 264: 160–174.

    Article  Google Scholar 

  • Filgueira, R., T. Guyondet, L.A. Comeau, and J. Grant. 2014. A fully-spatial ecosystem-DEB model of oyster (Crassostrea virginica) carry capacity in the Richibucto Estuary, Eastern Canada. Journal of Marine Systems 136: 42–54. doi:10.1016/j.jmarsys.2014.03.015. Elsevier B.V.

    Article  Google Scholar 

  • Filgueira, R., C.J. Byron, L.A. Comeau, B. Costa-Pierce, P.J. Cranford, J.G. Ferreira, J. Grant, et al. 2015. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Marine Ecology Progress Series 518: 281–287. doi:10.3354/meps11048.

    Article  Google Scholar 

  • Foreman, K.H. 1985. Regulation of benthic algal and meiofaunal productivity and standing stock in a salt marsh ecosystem: the relative importance of resources and predation. Pp 224. Ph.D. Thesis, Boston University.

  • Frankignoulle, M., and C. Canon. 1994. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39: 458–462.

    Article  CAS  Google Scholar 

  • Giles, Hilke, and Conrad A. Pilditch. 2006. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes. Marine Biology 150: 261–271. doi:10.1007/s00227-006-0348-7.

    Article  CAS  Google Scholar 

  • Gillikin, David P., Anne Lorrain, Li Meng, and Frank Dehairs. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71: 2936–2946. doi:10.1016/j.gca.2007.04.003.

    Article  CAS  Google Scholar 

  • Giordano, J.C.P., M.J. Brush, and I.C. Anderson. 2011. Quantifying annual nitrogen loads to Virginia’s coastal lagoons: sources and water quality response. Estuaries and Coasts 34: 297–309.

    Article  CAS  Google Scholar 

  • Grant, J., C. Bacher, P.J. Cranford, T. Guyondet, and M. Carreau. 2008. A spatially explicit ecosystem model of seston depletion in dense mussel culture. Journal of Marine Systems 73(1–2): 155–168.

    Article  Google Scholar 

  • Grizzle, R.E., V.M. Bricelj, and S.E. Shumway. 2001. Physiological ecology of Mercenaria mercenaria. In Biology of the hard clam, ed. J.N. Kraeuter and M. Castagna. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Gruber, Nicolas. 2015. Ocean biogeochemistry: carbon at the coastal interface. Nature 517: 148–149. doi:10.1038/nature14082.

    Article  CAS  Google Scholar 

  • Guyondet, T., R. Sonier, and L.A. Comeau. 2013. Spatially explicit seston depletion index to optimize shellfish culture. Aquaculture Environment Interactions 4: 175–186. doi:10.3354/aei00083.

    Article  Google Scholar 

  • Hammen, Carl Schlee. 1980. Marine invertebrates. University Press of New England.

  • Herman, Julie, Jian Shen, and Jie Huang. 2007. Tidal flushing characteristics in Virginia’s tidal embayments. Virginia Coastal Zone Management Program: 1–25.

  • Hily, Christian, Jacques Grall, Laurent Chauvaud, Morgane Lejart, and Jacques Clavier. 2013. CO2 generation by calcified invertebrates along rocky shores of Brittany, France. Marine and Freshwater Research 64: 91. doi:10.1071/MF12146.

    Article  CAS  Google Scholar 

  • Hofmann, E.E., J.M. Klinck, J.N. Kraeuter, E.N. Powell, R.E. Grizzle, S.C. Buckner, and V.M. Bricelj. 2006. A population dynamics model of the hard clam, Mercenaria mercenaria: development of the age- and length-frequency structure of the population. Journal of Shellfish Research 25(2): 417–444.

    Article  Google Scholar 

  • Hondula, K.L., and M.L. Pace. 2014. Macroalgal support of cultured hard clams in a low nitrogen coastal lagoon. Marine Ecology Progress Series 498: 187–201. doi:10.3354/meps10644.

    Article  CAS  Google Scholar 

  • Kellogg, Lisa M., Ashley R. Smyth, Mark W. Luckenbach, Ruth H. Carmichael, Bonnie L. Brown, Jeffrey C. Cornwell, Michael F. Piehler, Michael S. Owens, D. Dalrymple Joseph, and Colleen B. Higgins. 2014. Use of oysters to mitigate eutrophication in coastal waters. Estuarine, Coastal and Shelf Science 151: 156–168. doi:10.1016/j.ecss.2014.09.025. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Kuo AY, Butt AJ, Kim SC, Lin J. 1998. Application of a tidal prism water quality model to Virginia small coastal basins: Poquoson River, Piankatank River, Cherrystone Inlet, and Hungars Creek. Special report in applied marine science and ocean engineering no. 348.Virginia Institute of Marine Sciences.

  • Kuschner, M.A. 2015. A model of carrying capacity and ecosystem impacts in a large-scale, bivalve-dominated agro-ecosystem: hard clam aquaculture in Cherrystone Inlet, VA. MS Thesis, Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia, USA.

  • Lake, Samuel J., and Mark J. Brush. 2015. Contribution of nutrient and organic matter sources to the development of periodic hypoxia in a tributary estuary. Estuaries and Coasts. doi:10.1007/s12237-015-9954-2.

    Google Scholar 

  • Laruelle, Goulven G., Ronny Lauerwald, Benjamin Pfeil, and Pierre Regnier. 2014. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochemical Cycles 28: 1199–1214. doi:10.1002/(ISSN)1944-9224.

    Article  CAS  Google Scholar 

  • Laws, E.A., and T.T. Bannister. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnology and Oceanography 25: 457–473.

    Article  CAS  Google Scholar 

  • Lindahl, Odd, Rob Hart, Bodil Hernroth, Sven Kollberg, Lars-Ove Loo, Lars Olrog, Ann-Sofi Rehnstam-Holm, Jonny Svensson, Susanne Svensson, and Ulf Syversen. 2005. Improving marine water quality by mussel farming: a profitable solution for Swedish society. Ambio 34: 131–138.

    Article  Google Scholar 

  • Luckenbach, M W, and H V Wang. 2004. Linking watershed loading and basin-level carrying capacity models to evaluate the effects of land use on primary production and shellfish aquaculture. Bull. Fish. Res. Agen.: 123–132.

  • Madden, C.J., and J.W. Day. 1992. An instrument system for high-speed mapping of chlorophyll a and physico-chemical variables in surface waters. Estuaries 15: 421–427.

    Article  CAS  Google Scholar 

  • Mayzaud, P., and R.J. Conover. 1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Series 45: 289–302.

    Article  CAS  Google Scholar 

  • McGlathery, Karen J., Iris Cofman Anderson, and Anna Christina Tyler. 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon. Marine Ecology Progress Series 216: 1–15.

    Article  CAS  Google Scholar 

  • Mesnage, Valérie, Sylvie Ogier, Gabriel Bally, Jean-Robert Disnar, Nathalie Lottier, Karine Dedieu, Christophe Rabouille, and Yoann Copard. 2007. Nutrient dynamics at the sediment–water interface in a Mediterranean lagoon (Thau, France): influence of biodeposition by shellfish farming activities. Marine Environmental Research 63: 257–277. doi:10.1016/j.marenvres.2006.10.001.

    Article  CAS  Google Scholar 

  • Metzger, E., C. Simonucci, E. Viollier, G. Sarazin, F. Prévot, and D. Jézéquel. 2007. Benthic response to shellfish farming in Thau lagoon: pore water signature. Estuarine, Coastal and Shelf Science 72: 406–419. doi:10.1016/j.ecss.2006.11.011.

    Article  Google Scholar 

  • Mirto, S., R. Danovaro, and A. Mazzola. 2000. Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the western Mediterranean. Marine Pollution Bulletin 40: 244–252.

    Article  CAS  Google Scholar 

  • Mistri, Michele, and Munari Cristina. 2012. Marine pollution bulletin. Marine Pollution Bulletin 64: 2261–2264. doi:10.1016/j.marpolbul.2012.07.010. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Munari, C., E. Rossetti, and M. Mistri. 2013. Shell formation in cultivated bivalves cannot be part of carbon trading systems: a study case with Mytilus galloprovincialis. Marine Environmental Research 92: 264–267.

    Article  CAS  Google Scholar 

  • Murphy, A.E., I.C. Anderson, and M.W. Luckenbach. 2015. Enhanced nutrient regeneration at commercial hard clam (Mercenaria mercenaria) beds and the role of macroalgae. Marine Ecology Progress Series 530: 135–151. doi:10.3354/meps11301.

    Article  CAS  Google Scholar 

  • Murphy, A.E., I.C. Anderson, A.R. Smyth, B. Song, M.W. Luckenbach. 2016. Microbial nitrogen processing in hard clam (Mercenaria mercenaria) aquaculture sediments: the relative importance of denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Limnology and Oceanography.

  • Newell, Roger I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23: 51–62. [Sl: National Shellfisheries Association.

  • Newell, R.I.E., and E.W. Koch. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27: 793–806.

    Article  Google Scholar 

  • Newell, Roger I.E., Jeffry C. Cornwell, and S. Owens. 2002. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: a laboratory study. Limnology and Oceanography 47: 1367–1379.

    Article  Google Scholar 

  • Nixon, Scott W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219. Taylor & Francis.

    Article  Google Scholar 

  • Nizzoli, D., D.T. Welsh, E.A. Fano, and P. Viaroli. 2006. Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Marine Ecology Progress Series 315: 151–165.

    Article  CAS  Google Scholar 

  • Nizzoli, D., D.T. Welsh, and P. Viaroli. 2011. Seasonal nitrogen and phosphorous dynamics during benthic clam and suspended mussel cultivation. Marine Pollution Bulletin 62: 1276–1287.

    Article  CAS  Google Scholar 

  • NRC. 2010. Ecosystem concepts for sustainable bivalve mariculture. National Research Council of the National Academies. Washington: The National Academies Press.

    Google Scholar 

  • Officer, C.B., T.J. Smayda, and R. Mann. 1982. Benthic filter feeding: a natural eutrophication control. Marine Ecology Progress Series 9: 203–210.

    Article  Google Scholar 

  • Orth, Robert J., Scott R. Marion, Kenneth A. Moore, and David J. Wilcox. 2010. Eelgrass (Zostera marina L.) in the Chesapeake Bay Region of Mid-Atlantic Coast of the USA: challenges in conservation and restoration. Estuaries and Coasts 33: 139–150. doi:10.1007/s12237-009-9234-0.

    Article  Google Scholar 

  • Petersen, J.K., K. Timmermann, M. Carlsson, M. Holmer, M. Maar, and O. Lindahl. 2012. Mussel farming can be used as mitigation tool—a reply. Marine Pollution Bulletin 64: 452–454.

    Article  CAS  Google Scholar 

  • Petersen, J.K., B. Hasler, K. Timmermann, and P. Nielsen. 2014. Mussels as a tool for mitigation of nutrients in the marine environment. Marine Pollution Bulletin 82: 137–143.

    Article  CAS  Google Scholar 

  • Peterson, B.J., and K.L. Heck. 1999. The potential for suspension feeding bivalves to increase seagrass productivity. Journal of Experimental Marine Biology and Ecology 240: 37–52.

    Article  Google Scholar 

  • Peterson, B.J., and K.L. Heck. 2001. An experimental test of the mechanism by which suspension feeding bivalves elevate seagrass productivity. Marin Ecology Progress Series 218: 115–125.

    Article  CAS  Google Scholar 

  • Piazza, B.P., P.D. Banks, and M.K. La Peyre. 2005. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restoration Ecology 13: 499–506.

    Article  Google Scholar 

  • Pinckney, J., and R.G. Zingmark. 1993. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: methodological considerations. Limnology and Oceanography 38: 1373–1383.

    Article  Google Scholar 

  • Powers, M.J., C.H. Peterson, H.C. Summerson, and Sean P. Powers. 2007. Macroalgal growth on bivalve aquaculture netting enhances nursery habitat for mobile invertebrates and juvenile fishes. Marine Ecology Progress Series 339: 109–122.

    Article  Google Scholar 

  • Price, T.J., G.W. Thayer, M.W. LaCroix, and G.P. Montgomery. 1976. The organic content of shells and soft tissues of selected estuarine gastropods and pelecypods. Proceedings of the National Shellfisheries Association 65: 26–31.

    Google Scholar 

  • Prins, Theo C., A.C. Smaal, and Richard F. Dame. 1998. A review of the feedbacks between bivalve grazing and ecosystem processes. Aquatic Ecology 31: 349–359.

    Article  Google Scholar 

  • Reay, W.G., D.L. Gallagher, and G.M. Simmons. 1995. Sediment-water column oxygen and nutrient fluxes in nearshore environments of the lower Delmarva Peninsula, USA. Marine Ecology Progress Series 118: 215–215. INTER RESEARCH.

    Article  CAS  Google Scholar 

  • Rose, J., J.G. Ferreira, K. Stephenson, S.B. Bricker, M. Tedesco, and G.H. Wikfors. 2012. Comment on Stadmark and Conley. Marine Pollution Bulletin 64: 449–451.

    Article  CAS  Google Scholar 

  • Rose, Julie M., Suzanne B. Bricker, Mark A. Tedesco, and Gary H. Wikfors. 2014. A role for shellfish aquaculture in coastal nitrogen management. Environmental Science & Technology 48: 2519–2525. doi:10.1021/es4041336.

    Article  CAS  Google Scholar 

  • Secrist, R.G. 2013. Food availability and utilization for cultured hard clams. Master’s Thesis, Virginia institute of marine science, The College of William and Mary, Gloucester Point, Virginia, USA.

  • Shoaf, W T, and B W Lium. 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnology and Oceanography: 926–928.

  • Souchu, P., André Vaquer, Y. Collos, S. Landrein, Deslous-Paoli Jean-Marc, and Bibent Bertrand. 2001. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Marine Ecology Progress Series 218: 141–152.

    Article  CAS  Google Scholar 

  • Stadmark, J., and D.J. Conley. 2011. Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Marine Pollution Bulletin 62: 1385–1388. doi:10.1016/j.marpolbul.2011.05.001.

    Article  CAS  Google Scholar 

  • Stadmark, J., and D.J. Conley. 2012. Response to Rose et al. and Petersen et al. Marine Pollution Bulletin 64: 455–456.

    Article  CAS  Google Scholar 

  • Strayer, David L, Nina F Caraco, Jonathan J Cole, Stuart Findlay, and Michael L Pace. 1999. Transformation of freshwater ecosystems by bivalves. BioScience 49. American Institute of Biological Sciences Circulation, AIBS, 1313 Dolley Madison Blvd., Suite 402, McLean, VA 22101. USA: 19–27.

  • Sundbäck, K., A. Miles, and E. Goransson. 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series 200: 59–76.

    Article  Google Scholar 

  • Tang, Q., J. Zhang, and J. Fang. 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series 424: 97–105. doi:10.3354/meps08979.

    Article  Google Scholar 

  • Tenore, Kenneth R., Joel C. Goldman, and J. Phillip Clarner. 1973. The food chain dynamics of the oyster, clam, and mussel in an aquaculture food chain. Journal of Experimental Marine Biology and Ecology 12: 157–165. Elsevier.

    Article  Google Scholar 

  • Valiela, Ivan. 1995. Producers and processes involved in primary. In Marine ecological processes, 3–17. New York: Springer Science and Business Media.

    Book  Google Scholar 

  • Valiela, Ivan, James McClelland, Jennifer Hauxwell, Peter J. Behr, Douglas Hersh, and Kenneth Foreman. 1997a. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.

    Article  Google Scholar 

  • Valiela, I., G. Collins, J. Kremer, K. Lajtha, M. Geist, B. Seely, J. Brawley, and C.H. Sham. 1997b. Nitrogen loading from coastal watersheds to receiving estuaries: new method and application. Ecological Applications 7(2): 358–380.

    Article  Google Scholar 

  • Vinogradov, A. P.: The elementary chemical composition of marine organisms, 647 pp. Sears Foundation for Marine Research Memoir II 1953

  • Waldbusser, G.G., E.N. Powell, and R. Mann. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94: 895–903.

    Article  Google Scholar 

  • Wiseman, H. 2010. Quantifying the ecosystem role of a suspension and a facultative deposit feeding bivalve in the New River Estuary, NC, with responses to changes in nutrient and sediment inputs. MS Thesis, Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia, USA.

  • Woods H, 2001. An examination of potential conflict between SAV and hard clam aquaculture in the lower Chesapeake Bay. MS Thesis, College of William and Mary, Williamsburg, VA.

Download references

Acknowledgments

We are grateful to the aquaculturists for providing access to their farms as well as information regarding harvest and cultivation practices. Thank you to Willy Reay for providing historical light attenuation data and Michael Kuschner for modeling the system. Feedback from Mark Luckenbach, Liz Canuel, Anne Giblin, and Lisa Kellogg greatly improved this manuscript. This work was supported by Virginia Sea Grant (NA10OAR4170085, #R/71515 W, #R/715168), the NSF GK12 Fellowship (DGE-0840804), the Strategic Environmental Research and Development Program – Defense Coastal/Estuarine Research Program Project SI-1413, and NSF Virginia Coast Reserve LTER Project (DEB 0080381, DEB 0621014). This manuscript is contribution No. 3551 from the Virginia Institute of Marine Science, College of William and Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Murphy.

Additional information

Communicated by Marco Bartoli

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(DOC 69 kb)

Supplementary Fig. S2

(DOC 87 kb)

Supplementary Fig. S3

(DOC 48 kb)

Supplementary Table S1

(DOC 121 kb)

Supplementary Table S2

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, A.E., Emery, K.A., Anderson, I.C. et al. Quantifying the Effects of Commercial Clam Aquaculture on C and N Cycling: an Integrated Ecosystem Approach. Estuaries and Coasts 39, 1746–1761 (2016). https://doi.org/10.1007/s12237-016-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0106-0

Keywords

Navigation