Skip to main content

Advertisement

Log in

Macroalgal Mats in a Eutrophic Estuary Obscure Visual Foraging Cues and Increase Variability in Prey Availability for Some Shorebirds

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Conservation of habitat for flagship species, such as birds, aids in the protection of biodiversity in critical ecosystems. Extensive mats of macroalgae stimulated by nutrient input to estuaries threaten critical successes in conservation made by legislation that reduces habitat destruction. Macroalgae can cover intertidal mudflats that are key foraging grounds for obligate visual foragers such as black-bellied plovers (Pluvialis squatarola), as well as foragers that routinely switch from visual to tactile foraging such as least sandpipers (Calidris minutilla), western sandpipers (Calidris mauri), and willets (Tringa semipalmata), and predominately tactile foragers such as marbled godwits (Limosa fedoa). We hypothesized that macroalgae would affect shorebirds directly by altering foraging behavior and indirectly by reducing prey availability. Mats reduced visual foraging (pecking) for sandpipers and marbled godwits and caused them to probe more often. Willets spent overall less time foraging than sandpipers and marbled godwits and did not alter their foraging strategy due to macroalgae. While foraging, black-bellied plovers, marbled godwits, and willets avoided macroalgae while sandpipers did not select between habitat types. This suggests macroalgae may have negative effects on plovers, marbled godwits, and willets by reducing foraging area but that sandpipers may utilize both macroalgae and bare sediments. Macroalgal mats indirectly influenced shorebirds by enhancing variability in prey availability across the mudflat landscape. By quantifying avoidance of or preference for mats, foraging behavior, and variation in prey availability, we showed that macroalgae have differential effects across shorebird foraging guilds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves, J.A., W.J. Sutherland, and J.A. Gill. 2012. Will improving wastewater treatment impace shorebirds? Effects of sewage discharges on estuarine invertebrates and birds. Animal Conservation 15: 44–52.

    Article  Google Scholar 

  • Alves, J.A., T.G. Gunnarsson, P.M. Potts, W.J. Sutherland, and J.A. Gill. 2013. Sex-biases in distribution and resource use at different spatial scales in a migratory shorebird. Ecology and Evolution 3: 1079–1090.

    Article  Google Scholar 

  • Ambrose, R., R. Vance, and N. Diaz. 2006. Wetland restoration monitoring report for Naval Base Ventura County. Mugu Lagoon: University of California Los Angeles.

    Google Scholar 

  • Arroyo, N., K. Aarino, and E. Bonsdorff. 2006. Drifting algae as a means of re-colonizing defaunated sediments in the Baltic Sea. A short-term microcosm study. Hydrobiologia 554: 83–95.

    Article  Google Scholar 

  • Barbier, E., E. Koch, B. Silliman, S.D. Hacker, E. Wolanski, J. Primavera, E. Granek, S. Polansky, S. Aswani, L.A. Cramer, D.M. Stoms, C.J. Kennedy, D. Bael, C.V. Kappel, G.M.E. Perillo, and D. Reed. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319: 321–323.

    Article  CAS  Google Scholar 

  • Barbosa, A., and E. Moreno. 1999. Evolution of foraging strategies in shorebirds: an ecomorphological approach. The Auk 116: 712–725.

    Article  Google Scholar 

  • Blumstein, D., and J. Daniel. 2007. Quantifying behavior the JWatcher Way. Sunderland: Sinauer Associates.

  • Boyer, K., and P. Fong. 2005. Macroalgal-mediated transfers of water column nitrogen to intertidal sediments and salt marsh plants. Journal of Experimental Marine Biology and Ecology 321: 59–69.

    Article  CAS  Google Scholar 

  • Brooks, R., and S. Bell. 2001. Mobile corridors in marine landscapes: enhancement of faunal exchange at seagrass/sand ecotones. Journal of Experimental Marine Biology and Ecology 264: 67–84.

    Article  Google Scholar 

  • Brooks, T., A. Balmford, N. Burgess, L.A. Hansen, J. Moore, C. Rahbek, P. Williams, L. Bennun, A. Byaruhanga, P. Kasoma, P. Njoroge, D. Pomeroy, and M. Wondafrash. 2001. Conservation priorities for birds and biodiversity: Do East African important bird areas represent species diversity in other terrestrial vertebrate groups? Ostrich Supplement 15: 3–12.

    Google Scholar 

  • Burger, J., S.A. Carlucci, C.W. Jeitner, and L. Niles. 2007. Habitat choice, disturbance, and management of foraging shorebirds and gulls at a migratory stopover. Journal of Coastal Research 23: 1159–1166.

    Article  Google Scholar 

  • Cabral, J., M. Pardal, R. Lopes, T. Murias, and J. Marques. 1999. The impact of macroalgal blooms on the use of the intertidal area and feeding behavior of waders (Charadrii) in the Mondego estuary (west Portugal). Acta Oecologica 20: 417–427.

    Article  Google Scholar 

  • Castillo-Guerrero, J., G. Fernandez, G. Arellano, and E. Mellink. 2009. Diurnal abundance, foraging behavior and habitat use by non-breeding Marbled Godwits and Willets at Guerrero negro, Baja California Sur, Mexico. Waterbirds 32: 400–407.

    Article  Google Scholar 

  • Clavel, J., R. Julliard, and V. Devictor. 2011. Worldwide decline of specialist species: Toward a global functional homogenization. Frontiers in Ecology and the Environment 9: 222–228.

    Article  Google Scholar 

  • Cohen, J. 1988. Statistical power for behavioral sciences. 2nd edition, 559 New Jersey: Lawrence Erlbaum Associates Inc.

  • Colwell, M., and S. Landrum. 1993. Nonrandom shorebird distribution and fine-scale variation in prey abundance. The Condor 95: 94–103.

    Article  Google Scholar 

  • Dit Durell, S., S. McGrorty, A. West, R. Clarke, J.D. Goss-Custard, and R. Stillman. 2005. A strategy for baseline monitoring of estuary special protection areas. Biological Conservation 121: 289–301.

    Article  Google Scholar 

  • Dominguez, J. 2002. Biotic and abiotic factors affecting the feeding behavior of the black-tailed godwit. Waterbirds 25: 393–400.

    Article  Google Scholar 

  • Duffy, J., J. Richardson, and K. France. 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8: 301–309.

    Article  Google Scholar 

  • Durell, S.E.A., Le. V. Dit. 2000. Individual feeding specialisation in shorebirds: population consequences and conservation implications. Biological Review 75: 503-518.

  • Eyre, B., and A. Ferguson. 2002. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification rates in seagrass, phytoplankton, benthic micro- and macroalgae dominated warm-temperate Australian lagoons. Marine Ecology Progress Series 229: 43–59.

    Article  CAS  Google Scholar 

  • Frisk, M.G., T.J. Miller, R.J. Latour, and S.J.D. Martell. 2011. Assessing biomass gains from marsh restoration in Delaware Bay using Ecopath with Ecosim. Ecological Modelling 222: 190–200.

    Article  Google Scholar 

  • Gibson, D., and B. Kessel. 1989. Geographic variation in the Marbled Godwit and description of an Alaska subspecies. The Condor 91: 436–443.

    Article  Google Scholar 

  • Goss-Custard, J.D., R. Jones, and P. Newbery. 1977. The ecology of the wash I. Distribution and diet of wading birds (Charadrii). Journal of Applied Ecology 14: 681–700.

    Article  Google Scholar 

  • Gratto-Trevor, C.L. 2000. Marbled Godwit (Limosa fedoa). In The Birds of North America Online: Cornell Lab of Ornithology.

  • Green, L. 2011. Macroalgal mats control trophic structure and shorebird foraging behavior in a southern California estuary. Dissertation, University of California, Los Angeles Los Angeles.

  • Green, L., M. Sutula, and P. Fong. 2014. How much is too much? Identifying benchmarks of adverse effects of macroalgae on the macrofauna in intertidal flats. Ecological Applications 24:300-314.

  • Hall, S., and F. Fisher Jr. 1985. Lead concentrations in tissues of marsh birds: Relationship of feeding habits and grit preference to spent shot ingestion. Bulletin of Envionmental Contamination and Toxicology 35: 1–8.

    Article  CAS  Google Scholar 

  • Hubbard, D., and J. Dugan. 2003. Shorebird use of an exposed sandy beach in southern California. Estuarine, Coastal and Shelf Science 58S: 41–54.

    Article  Google Scholar 

  • Hugie, D.M. 2004. A waiting game between the black-bellied plover and its fiddler crab prey. Animal Behavior 67: 823–831.

    Article  Google Scholar 

  • Johnson, M., J.P. Beckmann, and L.W. Oring. 2003. Diurnal and nocturnal foraging behavior of American avocets. The Wilson Bulletin 115: 176–185.

    Article  Google Scholar 

  • Kennison, R. 2008. Evaluating ecosystem function of nutrient retention and recycling in excessively eutrophic estuaries. Los Angeles: University of California Los Angeles.

    Google Scholar 

  • Kennison, R.L., and P. Fong. 2014. Extreme Eutrophication in Shallow Estuaries and Lagoons is Driven by a Unique Combination of Local Watershed Modifications That Trump Variability Associated with Wet and Dry Seasons. Estuaries and Coasts 37 (Suppl 1): S164-S179.

  • Kober, K., and F. Bairlein. 2009. Habitat choice and niche characteristics under poor food conditions. Study on migratory Neartic shorebirds in the intertidal flats of Brazil. Ardea 97: 31–42.

    Article  Google Scholar 

  • Kuwae, T., P. Beninger, P. Decottignies, K. Mathot, D. Lund, and R. Elner. 2008. Biofilm grazing in a higher vertebrate: The western sandpiper, Calidris mauri. Ecology 89: 599–606.

    Article  Google Scholar 

  • Lafferty, K.D., D.A. Rodriguez, and A. Chapman. 2013. Temporal and spatial variation in bird and human use of beaches in southern California. Springer Plus 2: 1–14.

    Article  Google Scholar 

  • Le Viol, I., F. Jiguet, L. Brotons, S. Herrando, A. Lindstrom, J.W. Pearce-Higgins, J. Reif, C.V. Turnhout, and V. Devictor. 2012. More and more generalists: Two decades of changes in the European avifauna. Biology Letters 8: 780–782.

    Article  Google Scholar 

  • Lee, N.M., and P.A.R. Hockey. 2001. Biases in the field estimation of shorebird prey sizes. Journal of Field Ornithology 72: 49–61.

    Article  Google Scholar 

  • Long, L., and C. Ralph. 2001. Dynamics of habitat use by shorebirds in estuarine and agricultural habitat in northwestern California. The Wilson Bulletin 113: 41–52.

    Article  Google Scholar 

  • Lotze, H., H. Lenihan, B. Bourque, R. Bradbury, R. Cooke, M. Kay, S. Kidwell, M. Kirby, C. Peterson, and J. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Lourenco, P., A. Silva, C. Santos, A. Miranda, J. Granadeiro, and J. Palmeirim. 2008. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34: 122–129.

    Article  Google Scholar 

  • Lowther, P.E., H.D. Douglas III, and C.L. Gratto-Trevor. 2001. Willet (Tringa semipalmata). In The Birds of North America Online: Cornell Lab of Ornithology.

  • Maimone-Celorio, M.R., and E. Mellink. 2002. Shorebirds and benthic fauna of tidal mudflats in Estero de Punta Banda, Baja California, Mexico. Bulletin Southern California Academy of Science 102: 26–38.

    Google Scholar 

  • Morand, P., and M. Merceron. 2005. Macroalgal population and sustainability. Journal of Coastal Research 21: 1009–1020.

    Article  Google Scholar 

  • Mouritsen, K.N. 1994. Day and night feeding in Dunlins Calidris alpina: Choice of habitat, foraging technique and prey. Journal of Avian Biology 25: 55–62.

    Article  Google Scholar 

  • Mouritsen, K.N., and K.T. Jensen. 1992. Choice of microhabitat in tactile foraging dunlins Calidira alpina: The importance of sediment penetrability. Marine Ecology Progress Series 85: 1–8.

    Article  Google Scholar 

  • Murias, T., J. Cabral, J.C. Marques, and J.D. Goss-Custard. 1996. Short-term effects of intertidal macroalgal blooms on the macrohabitat selection and feeding behaviour of wading birds in the Mondego Estuary (West Portugal). Estuarine, Coastal and Shelf Science 43: 677–688.

    Article  Google Scholar 

  • Nolet, B.A., R.M. Bevan, M. Klaassen, O. Langevoord, and Y.G.J.T. Van Der Heijden. 2002. Habitat switching by Bewick’s swans: Maximization of average long-term energy gain? Journal of Animal Ecology 71: 979–993.

    Article  Google Scholar 

  • Page, G.W., and W.D. Shuford. 2000. U.S. Shorebird Conservation Plan. . In Southern Pacific Coast Regional Shorebird Plan. Version 1.0, 1-66: Point Reyes Bird Observatory.

  • Page, G., L. Stenzel, and J. Kjelmyr. 1999. Overview of shorebird abundance and distribution in wetlands of the Pacific coast of the contiguous United States. The Condor 101: 461–471.

    Article  Google Scholar 

  • Placyk, J.S., and B.A. Harrington. 2004. Prey abundance and habitat use by migratory shorebirds at coastal stopover sites in Connecticut. Journal of Field Ornithology 75: 223–231.

    Article  Google Scholar 

  • Quammen, M.L. 1982. Influence of subtle substrate differences on feeding by shorebirds on intertidal mudflats. Marine Biology 71: 339–343.

    Article  Google Scholar 

  • Ramer, B., G. Page, and M. Yoklavich. 1991. Seasonal abundance, habitat use, and diet of shorebirds in Elkhorn Slough, California. Western Birds 22: 157–174.

    Google Scholar 

  • Rojas, L.M., R. McNeil, T. Cabana, and P. Lachapelle. 1999. Diurnal and nocturnal visual capabilities in shorebirds as a function of their feeding strategies. Brain, Behavior and Evolution 53: 29–43.

    Article  CAS  Google Scholar 

  • Safran, R.J., C.R. Isola, M.A. Colwell, and O.E. Williams. 1997. Benthic invertebrates at foraging locations of nine waterbird species in managed wetlands of the northern San Joaquin Valley, California. Wetlands 17: 407–415.

    Article  Google Scholar 

  • Santos, C.D., S. Saraiva, J.M. Palmeirim, and J.P. Granadeiro. 2009. How do waders perceive buried prey with patchy distributions? Journal of Experimental Marine Biology and Ecology 372: 43–48.

    Article  Google Scholar 

  • Schneider, D., and B. Harrington. 1981. Timing of shorebird migration to prey depletion. The Auk 98: 801–811.

    Google Scholar 

  • Seaman, J., S. Walls, S. Wise, and R. Jaeger. 1994. Caveat emptor: Rank transform methods and interaction. Trends in Ecology and Evolution 9: 261–263.

    Article  Google Scholar 

  • Sousa, W. 1993. Size-dependent predation on the salt-marsh snail Cerithidea californica Haldeman. Journal of Experimental Marine Biology and Ecology 166: 19–37.

    Article  Google Scholar 

  • Spruzen, F., A.M.M. Richardson, and E. Woehler. 2008. Influence of environmental and prey variables on low tide shorebird habitat use within the Robbins Passage wetlands, Northwest Tasmania. Estuarine, Coastal and Shelf Science 78: 122–134.

    Article  Google Scholar 

  • Stenzel, L., H. Huber, and G. Page. 1976. Feeding behavior and diet of the long-billed curlew and willet. The Wilson Bulletin 88: 314–332.

    Google Scholar 

  • Sutherland, T.F., P.C.F. Shepherd, and R.W. Elner. 2000. Predation on meiofaunal and macrofaunal invertebrates by western sandpipers (Calidris mauri): Evidence for dual foraging modes. Marine Biology 137: 983–993.

    Article  Google Scholar 

  • Tewfik, A., J. Rasmussen, and K. McCann. 2005. Anthropogenic enrichment alters a marine benthic food web. Ecology 86: 2726–2736.

    Article  Google Scholar 

  • Triplet, P., R. Stillman, and J.D. Goss-Custard. 1999. Prey abundance and strength of interference in a foraging shorebird. Journal of Animal Ecology 68: 254–265.

    Article  Google Scholar 

  • van Hulzen, J.B., J. van Soelen, P.M.J. Herman, and T.J. Bouma. 2006. The significance of spatial and temporal patterns of algal mat deposition in structuring salt marsh vegetation. Journal of Vegetation Science 17: 291–298.

    Article  Google Scholar 

Download references

Acknowledgments

The authors recognize the invertebrate lives that were lost during the course of this investigation. The authors would like to acknowledge the help of M. Lopez who assisted in the field and in the lab. M. Hernandez contributed many hours to counting macrofauna. The authors thank the US Navy for permitting access to the Mugu Lagoon, and M. Ruane who facilitated the research on site. For funding, the authors thank the Southern California Coastal Water Research Project and the UCLA Department of Ecology and Evolutionary Biology. Early comments by A. Armitage greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Green.

Additional information

Communicated by Edwin DeHaven Grosholz

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, L., Blumstein, D.T. & Fong, P. Macroalgal Mats in a Eutrophic Estuary Obscure Visual Foraging Cues and Increase Variability in Prey Availability for Some Shorebirds. Estuaries and Coasts 38, 917–926 (2015). https://doi.org/10.1007/s12237-014-9862-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9862-x

Keywords

Navigation