Skip to main content
Log in

Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

From undisturbed Antarctic habitats (permafrost sediments 30–150 thousand years of age, water of Radok Lake) and superficial deposits contaminated with petroleum products, we isolated 14 and 9 strains of Penicillium fungi, respectively. Comparison of the fungal complexes showed them to differ by species composition; only two species—P. palitans and P. solitum—were in the species lists of both groups. The identified secondary metabolites in the investigated strains belonged to diketopiperazine (group of roquefortines, rugulosuvin B), benzodiazepine (anacin, cyclopenins), quinoline alkaloids (viridicatins), clavine ergot alkaloids (α-cyclopiazonic acid, festuclavine, fumigaclavines), polycyclic indole alkaloids (communesin B, chaetoglobosin A), amino acid derivatives (N-acetyltryptamine, chrysogins, penicillin G), polyketides (citreoviridin A, mycophenolic acid), and terpenes (andrastins, phomenone). Strains isolated from anthropogenically altered habitats produced a more complete and characteristic profile of exometabolites, as compared with strains isolated from undisturbed habitats. It is only from contaminated soils there were isolated fungi that produced more structurally diverse secondary metabolites pertaining to polycyclic indole alkaloids and terpenoids. The fungi isolated from contaminated samples can be used in biodegradation of oil spills and bioremediation of the environment, and also as producers of promising biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almamoori AM, Saleh MM, Salman JM (2017) Bioremediation of total petroleum hydrocarbons using cotton plant (Gossypium hirsutum) and applying augmentation technique by inoculation with Pseudomonas aeruginosa and Penicillium expansum. Int J Chem Tech Res 10:58–67

    CAS  Google Scholar 

  • Ashrafi S, Helaly S, Schroers H-J, Stadler M, Richert-Poeggeler KR, Dababat AA, Maier W (2017) Ijuhya vitelline sp. nov., a novel source for chaetoglobosin a, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi. PLoS One 12:e0180032. https://doi.org/10.1371/journal.pone.0180032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda A, Gummadidala PM, Gomaa OM (2016) Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 100:17–29. https://doi.org/10.1007/s00253-015-7032-0

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-C, Yoshida E, Sato Y, Koyama D, Reddy MV, Iwasa T, Kikuchi S (2014) Selection and characterization of an alkylphenol-degrading fungus isolated from Antarctic soil. Proc 5th Forum on Studies of the Environmental and Public Health Issues in the Asian Mega-cities, Seoul, Korea

  • Chavez R, Fierro F, Garcia-Rico RO, Vaca I (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903–910. https://doi.org/10.3389/fmicb.2015.00903

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole RJ, Schweikert MA (2003) Handbook of secondary fungal metabolites. Acad Press, Amsterdam, pp 1–3

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Fukutomi Y, Taniguchi M (2015) Sensitization to fungal allergens: resolved and unresolved issues. Allergol Int 64:321–331. https://doi.org/10.1016/j.alit.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  • Hong SY, Roze LV, Linz JE (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins (Basel) 5:683–702. https://doi.org/10.3390/toxins5040683

    Article  CAS  Google Scholar 

  • Huseyin CE, O’Toole PW, Cotter PD, Scanlan PD (2017) Forgotten fungi – the gut mycobiome in human health and disease. FEMS Microbiol Rev 41:479–511. https://doi.org/10.1093/femsre.fuw047

    Article  CAS  PubMed  Google Scholar 

  • Kerzaon I, Pouchus YF, Monteau F, Le Bizec B, Nourrisson MR, Biard J-F, Grovel O (2009) Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum link by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 23:3928–3938. https://doi.org/10.1002/rcm.4330

    Article  CAS  PubMed  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of longterm natural cryopreservation. Microbiology (Moscow) 70:356–364. https://doi.org/10.1023/A:1010419831245

    Article  CAS  Google Scholar 

  • Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509. https://doi.org/10.1111/j.1574-6941.2012.01442.x

    Article  CAS  PubMed  Google Scholar 

  • Konova IV, Sergeeva YE, Galanina LA, Kochkina GA, Ivanushkina NE, Ozerskaya SM (2009) Lipid synthesis by Geomyces pannorum under the impact of stress factors. Microbiology (Moscow) 78:42–47. https://doi.org/10.1134/S0026261709010068

    Article  CAS  Google Scholar 

  • Korneikova MV, Evdokimova GA, Lebedeva EV (2011) The complexes of microscopic fungi in cultivated soils polluted by oil products on the north of Kola peninsula. Mikol Fitopatol 45:249–256 (in Russian)

    CAS  Google Scholar 

  • Levinskaite L (2018) Biodegradation potential of fungi Penicillium isolated from synthetic polymeric materials. J Environ Eng 144(7):06018002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001391

    Article  Google Scholar 

  • Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734–3741. https://doi.org/10.1021/jf500390h

    Article  CAS  PubMed  Google Scholar 

  • Ozerskaya SM, Kochkina GA, Ivanushkina NE, Knyazeva EV, Gilichinskii DA (2008) The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology (Moscow) 77:482–489. https://doi.org/10.1134/s0026261708040152

    Article  CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214. https://doi.org/10.2174/138527209788921774

    Article  CAS  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  • Refai M, El-Yazid HA, Tawakkol W (2015) Monograph on the genus Penicillium. A guide for historical, classification and identification of penicilli, their industrial applications and detrimental effects. Cairo University, Faculty of Veterinary Medicine, Cairo

    Google Scholar 

  • Rojas-Aedo JF, Gil-Durán C, Del-Cid A, Valdés N, Álamos P, Vaca I, García-Rico RO, Levicán G, Tello M, Chávez R (2017) The biosynthetic gene cluster for andrastin A in Penicillium roqueforti. Front Microbiol 8: Article 813. https://doi.org/10.3389/fmicb.2017.00813

  • Roze LV, Chanda A, Linz JE (2011) Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 48:35–48. https://doi.org/10.1016/j.fgb.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud Mycol 49:1–143

    Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210:227–232. https://doi.org/10.1111/j.1574-6968.2002.tb11185.x

    Article  CAS  PubMed  Google Scholar 

  • Semenov SM (1990) Laboratory media for actinomycetes and fungi. Manual. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Silva GH, de Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DHS, Bolzani VS, Young MCM, Costa-Neto C, Pfenning LH, Berlinck RGS, Araujo AR (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperace). Phytochem Lett 3:164–167. https://doi.org/10.1016/j.phytol.2010.07.001

    Article  CAS  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60. https://doi.org/10.1016/j.femsec.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 50:207–216. https://doi.org/10.1007/s00248-006-9086-0

    Article  Google Scholar 

  • Spini G, Spina F, Poli A, Blieux AL, Regnier T, Gramellini C, Varese GC, Puglisi E (2018) Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Front Microbiol 9:2543. https://doi.org/10.3389/fmicb.2018.02543

    Article  PubMed  PubMed Central  Google Scholar 

  • Szatmari I, Lingvay M, Tudosie L, Cojocaru A, Lingvay I (2015) Monitoring results of polyethylene insulation degradability from soil buried power cables. Rev Chim 66:304–311

    CAS  Google Scholar 

  • Thenmozhi R, Arumugam K, Nagasathya A, Thajuddin N, Paneerselvam A (2013) Studies on mycoremediation of used engine oil contaminated soil samples. Adv Appl Sci Res 4:110–118

    CAS  Google Scholar 

  • Yang Y, Chen M, Li Z, Al-Hatmi AM, de Hoog S, Pan W, Ye Q, Bo X, Li Z, Wang S, Wang J, Chen H, Liao W (2016) Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales. Front Microbiol 7:1541. https://doi.org/10.3389/fmicb.2016.01541

    Article  PubMed  PubMed Central  Google Scholar 

  • Zain ME (2009) Effect of olive oil on secondary metabolite and fatty acid profiles of Penicillium expansum, Aspergillus flavus, A. parasiticus and A. ochraceus. Aust J Basic Appl Sci 3:4274–4280

    CAS  Google Scholar 

  • Zehra A, Dubey MK, Meena M, Aamir M, Patel CB, Upadhyay RS (2018) Role of Penicillium species in bioremediation processes. Chapter 14. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 247–260

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank B.P. Baskunov (G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia) for mass-spectral data. This work was supported by the Russian Foundation for Basic Research, Projects No. 15-29-02629-ofi_m and No. 16-04-01050-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kozlovsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovsky, A.G., Kochkina, G.A., Zhelifonova, V.P. et al. Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol 65, 95–102 (2020). https://doi.org/10.1007/s12223-019-00708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00708-0

Navigation