Skip to main content

Advertisement

Log in

High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 1012/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    Article  CAS  PubMed  Google Scholar 

  • Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MI, Mavinic DS, Beckie RD (2007) A solubility and thermodynamic study of struvite. Environ Technol 28:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Bowen R (1986) Unraveling the mysteries of shear-sensitive mixing systems. Chem Eng 9:55–63

    Google Scholar 

  • Chapman BD, Schleicher M, Beuger A, Gostomski P, Thiele JH (2006) Improved methods for the cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. J Microbiol Methods 65:96–106

    Article  CAS  PubMed  Google Scholar 

  • Farges B, Poughon L, Roriz D, Creuly C, Dussap C-G, Lasseur C (2012) Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies. Appl Biochem Biotechnol 167:1076–1091

    Article  CAS  PubMed  Google Scholar 

  • Freudenberg S, Fasold K-I, Müller SR, Siedenberg D, Kretzmer G, Schügerl K, Giuseppin M (1996) Fluorescent microscopic investigation of Aspergillus awamori growing on synthetic and complex media and producing xylanase. J Biotechnol 46:265–273

    Article  CAS  Google Scholar 

  • Fuchs C, Köster D, Wiebusch S, Mahr K, Eisbrenner G, Märkl H (2002) Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli. J Biotechnol 93:243–251

    Article  CAS  PubMed  Google Scholar 

  • Grady CPL Jr, Williams DR (1975) Effects of influent substrate concentration on the kinetics of natural microbial population in continuous culture. Water Res 9:171–180

    Article  Google Scholar 

  • Grady CPL Jr, Lim HC (1980) Biological wastewater treatment, theory and applications. Marcel Dekker, New York, pp 291–299

    Google Scholar 

  • Güven D, Schmidt I (2009) Specific activity and viability of Nitrosomonas europaea during discontinuous and continuous fermentation. Proc Biochem 44:516–520

    Article  Google Scholar 

  • Heaton FW (1960) Determination of magnesium by the Titan yellow and ammonium phosphate methods. J Clin Pathol 13:358–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollocher TC, Kumar S, Nicholas DJD (1982) Respiration-dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidations. J Bacteriol 149:1013–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman MR, Arp DJ (1992) 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem 267:1534–1545

    CAS  PubMed  Google Scholar 

  • Jónás Á, Fekete E, Flipphi M, Sándor E, Jäger S, Molnár ÁP, Szentirmai A, Karaffa L (2014) Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes. J Antibiot 67:489–497

    Article  PubMed  Google Scholar 

  • Krahe M, Antranikian G, Märkl H (1996) Fermentation of extremophilic microorganisms. FEMS Microbiol Rev 18:271–285

    Article  CAS  Google Scholar 

  • Kumar S, Nicholas DJD (1983) Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis. J Bacteriol 154:65–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosawa H, Märkl H, Niebuhr-Redder C, Matsumura M (1991) Dialysis bioreactor with radial-flow fixed bed for animal cell culture. J Ferment Bioeng 1:41–45

    Article  Google Scholar 

  • Märkl H, Lechner M, Götz F (1990) A new dialysis fermentor for the production of high concentrations of extracellular enzymes. J Ferment Bioeng 69:244–249

    Article  Google Scholar 

  • Märkl H, Zenneck C, Dubach AC, Ogbonna JC (1993) Cultivation of Escherichia coli to high cell densities in a dialysis reactor. Appl Microbiol Biotechnol 39:48–52

    Article  PubMed  Google Scholar 

  • McFeters A, Singh S, Byun PR, Callis S, Williams (1991) Acridine orange staining reaction as an index of physiological activity in Escherichia coli. J Microbiol Methods 13:87–97

    Article  CAS  PubMed  Google Scholar 

  • McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci U S A 74:4835–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro M, Séneca J, Magalhães C (2014) The history of aerobic ammonia oxidizers: from the first discoveries to today. J Microbiol 52:537–547

    Article  CAS  PubMed  Google Scholar 

  • Painter HA (1970) A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res 4:393–450

    Article  CAS  Google Scholar 

  • Park S, Ely RL (2008) Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Appl Environ Microbiol 74:5475–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford, UK, pp 156–170

    Google Scholar 

  • Pörtner R, Bohmann A, Märkl H (1992) Membrane dialysis bioreactor with integrated radial-flow fixed bed—a new concept for continuous cultivation of animal cells. In: Murakami H, Shirahata S, Tachibana, H (eds) Animal Cell Technology: Basic and Applied Aspects, Vol.4. Proceedings of the Fourth Annual Meeting of the Japanese Association for Animal Cell Technology, Fukuoka, Japan, 13–15 November 1991. Kluywer Academic Publisher, pp 217–223

  • Prinčič A, Mahne I, Megušar F, Paul EA, Tiedje JM (1998) Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol 64:3584–3590

    PubMed  PubMed Central  Google Scholar 

  • Sanchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  • Sándor E, Karaffa L, Paul GC, Pócsi I, Thomas CR, Szentirmai A (2000) Assessment of the metabolic activity of Acremonium chrysogenum using acridine orange. Biotechnol Lett 22:693–697

    Article  Google Scholar 

  • Sándor E, Szentirmai A, Biró S, Karaffa L (1999) Specific cephalosporin C production of Acremonium chrysogenum is independent of the culture density. Biotechnol Technol 13:443–445

    Article  Google Scholar 

  • Sato C, Schnoor JL, McDonald DB, Huey J (1985) Test medium for the growth of Nitrosomonas europaea. Appl Environ Microbiol 49:1101–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt I, Look C, Bock E, Jetten MSM (2004) Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas. Microbiology 150:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Stein LY, Arp DJ (2003) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64:4098–4102

    Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Tan NCG, Kampschreur MJ, Wanders W, van der Pol WLJ, van de Vossenberg J, Kleerebezem R, van Loosdrecht MCM, Jetten MSM (2008) Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations. Syst Appl Microbiol 31:114–125

    Article  CAS  PubMed  Google Scholar 

  • Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, van Verseveld HW (1999) Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol 65:2471–2477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J (1996) Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention. FEMS Microbiol Ecol 19:47–52

    Article  CAS  Google Scholar 

  • Terada A, Sugawara S, Yamamoto T, Zhou S, Koba K, Hosomi M (2013) Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes. Biochem Eng J 79:153–161

    Article  CAS  Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 39–62

    Google Scholar 

  • Yan J, Jetten M, Rang J, Hu Y (2010) Comparison of the effects of different salts on aerobic ammonia oxidizers for treating ammonium-rich organic wastewater by free and sodium alginate immobilized biomass system. Chemosphere 81:669–673

    Article  CAS  PubMed  Google Scholar 

  • Yingling B, Zhengfang Y (2013) Application of an integrated statistical design for optimization of culture condition for ammonium removal by Nitrosomonas europaea. PLoS ONE 8:e60322

    Article  PubMed Central  Google Scholar 

  • Yu R, Chandran K (2010) Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol 10:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by the EU and cofinanced by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043) and by the Hungarian Scientific Research Fund (OTKA K1006600 and NN116519). The authors are grateful to Zoltán Németh, Zoltán Fekete, Antal Kökényesi, Csilla Noémi Lipták, and István Kolláth for their help. We thank József Kozma (Gedeon Richter Plc, Budapest, Hungary) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Karaffa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 26 kb)

Fig. S1

Microscopic image of struvite crystals formed in the early stages of N. europaea fermentations. For technical details, see Materials and methods section. (PDF 43 kb)

Fig. S2

Microscopic images of N. europaea cells stained with Acridine Orange at 20 (image 1.), 40 (2.), 70 (3.) and 80 h (4.) of the conventional batch fermentation presented in Fig. 3. For technical details, see Materials and methods section. (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papp, B., Török, T., Sándor, E. et al. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea . Folia Microbiol 61, 191–198 (2016). https://doi.org/10.1007/s12223-015-0425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0425-8

Keywords

Navigation