Skip to main content
Log in

Characterization of N2O emission and associated bacterial communities from the gut of wood-feeding termite Nasutitermes voeltzkowi

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Xylophagous termites rely on nitrogen deficient foodstuff with a low C/N ratio. Most research work has focused on nitrogen fixation in termites highlighting important inflow and assimilation of atmospheric nitrogen into their bodies fundamentally geared up by their intestinal microbial symbionts. Most of termite body nitrogen is of atmospheric origin, and microbially aided nitrification is the principal source of this nitrogen acquisition, but contrarily, the information regarding potent denitrification process is very scarce and poorly known, although the termite gut is considered to carry all favorable criteria necessary for microbial denitrification. Therefore, in this study, it is hypothesized that whether nitrification and denitrification processes coexist in intestinal milieu of xylophagous termites or not, and if yes, then is there any link between the denitrification product, i.e., N2O and nitrogen content of the food substrate, and moreover where these bacterial communities are found along the length of termite gut. To answer these questions, we measured in vivo N2O emission by Nasutitermes voeltzkowi (Nasutitermitinae) maintained on different substrates with varying C/N ratio, and also, molecular techniques were applied to study the diversity (DGGE) and density (qPCR) of bacterial communities in anterior and posterior gut portions. Rersults revealed that xylophagous termites emit feeble amount of N2O and molecular studies confirmed this finding by illustrating the presence of an ample density of N2O-reductase (nosZ) gene in the intestinal tract of these termites. Furthermore, intestinal bacterial communities of these termites were found more dense and diverse in posterior than anterior portion of the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327

    Article  Google Scholar 

  • Benemann JR (1973) Nitrogen fixation in termites. Science 181:164–165

    Article  CAS  PubMed  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE and Higashi M (eds) Termites: Evolution, Sociality, Symbiosis, Ecology 363–387

  • Braker G, Conrad R (2011) Chapter 2 – Diversity, Structure, and Size of N2O-Producing Microbial Communities in Soils—What Matters for Their Functioning? In: Allen I, Laskin SS, Geoffrey MG (eds). Adv Appl Microbiol 33–70

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Brauman A, Doré J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  CAS  PubMed  Google Scholar 

  • Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of Australia. J Geophys Res 105:353–367

    Google Scholar 

  • Breznak J (2000) Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: Evolution, Sociality, Symbiosis, Ecology pp. 209–231

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen Fixation in Termites. Nature 244:577–580

    Article  CAS  PubMed  Google Scholar 

  • Brümmer C, Papen H, Wassmann R, Bruggemann N (2009) Termite mounds as hot spots of nitrous oxide emissions in South-Sudanian savanna of Burkina Faso (West Africa). Geophys Res Lett 36. doi: 10.1029/2009gl037351

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink–microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravorty S, Helb D, Burdey M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Meth 69:330–339

    Article  CAS  Google Scholar 

  • Eggleton P (2011) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of Termites: A Modern Synthesis pp. 1–26

  • Eggleton P, Williams PH, Gaston KJ (1994) Explaining global termite diversity – productivity or history. Biodivers Conserv 3:318–330

    Article  Google Scholar 

  • EPA (2010) Methane and nitrous oxide emissions from natural sources.US Environmental Protection Agency, Washington, DC Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008. pp. 1–194

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higashi M, Abe T, Burns TP (1992) Carbon-nitrogen balance and termite ecology. Proc R Soc Lond Ser B Biol 249:303–308

    Article  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change. IPCC Fourth Assessment Report. Climate Change 2007, AR4. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones CG, John H, Lawton MS (1994) Organisms as ecological engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Karsten GR, Drake HL (1997) Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63:1878–1882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khalil MAK, Rasmussen RA, French JRJ, Holt JA (1990) The influence of termites on a atmospheric trace gases – CH4, CO2, CHCL3, N2O, CO, H2, and light-hydrocarbons. J Geophys Res Atmos 95:3619–3634

    Article  Google Scholar 

  • Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Mosier A, Wassmann R, Verchot L, King J, Palm C (2004) Methane and nitrogen oxide fluxes in tropical agricultural soils: sources, sinks and mechanisms. Environ Dev Sustain 6:11–49

    Article  Google Scholar 

  • Mrázek J, Štrosová L, Fliegerová K, Kott T, Kopečný J (2008) Diversity of insect intestinal microflora. Folia Microbiol 53:229–233

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ngugi DK, Brune A (2012) Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14:860–871

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic Diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc Natl Acad Sci U S A 78:4601–4605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderson M (1996) Biomass of termites and their emissions of methane and carbon dioxide: A global database. Glob Biogeochem Cycles 10:543–557

    Article  CAS  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skiba U, Smith KA (2000) The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere Global Change Sci 2:379–386

    Article  CAS  Google Scholar 

  • Tayasu I, Sugimoto A, Wada E, Abe T (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–231

    Article  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Webster EA, Hopkins DW (1996) Contributions from different microbial processes to N2O emission from soil under different moisture regimes. Biol Fertil Soils 22:331–335

    Article  CAS  Google Scholar 

  • Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M (2007) Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16:3768–3777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was done with financial and technical support from UMR Eco&Sols (Montpellier, France) and UMR BioEMCo (Bondy, France). The authors have no conflicts of interest to disclose. We acknowledge Alain Robert for identification of termite species. We are also grateful to Bruno Buatois (CEFE, Montpellier, France), Anne-Laure Pablo (UMR Eco&Sols, Montpellier, France), and Alain Robert (UMR BioEMCo, Bondy, France) for their technical assistance.

Ethical statement

The study protocol did not require any specific ethical consideration and approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zeeshan Majeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, M.Z., Miambi, E., Riaz, M.A. et al. Characterization of N2O emission and associated bacterial communities from the gut of wood-feeding termite Nasutitermes voeltzkowi . Folia Microbiol 60, 425–433 (2015). https://doi.org/10.1007/s12223-015-0379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0379-x

Keywords

Navigation