Skip to main content
Log in

Neural network modeling and principal component analysis of antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present work was undertaken to predict the antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric with artificial neural network (ANN) using chitosan/AgCl-TiO2 concentration and curing time as predictors. Cotton fabric samples were prepared by treating with different blends of chitosan/AgCl-TiO2 colloid and varying curing time. The antibacterial activity against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) was measured in terms of % bacterial reduction (% BR). Feedforward neural network models were trained with combination of Levenberg- Marqaurdt algorithm and Bayesian regularization support incorporated in backpropagation. The 10 % cross-validation technique was also carried out to rule out any chance of over-fitting of the trained networks. Furthermore trend analysis was also performed with developed models to understand the effect of input parameters. The promising results realized with excellent coefficient of determination and acceptable mean absolute error during network training and their testing on the novel data patterns. The developed models will benefit the design and development of clean and hygienic textiles. Principal component analysis (PCA) was also performed to visualize and analyze the correlation between the variables and the trend of individual observation on two-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Lam, C. W. Kan, and C. W. M. Yuen, Text. Prog., 44, 175 (2012).

    Article  Google Scholar 

  2. S. H. Lim and S. M. Hudson, J. Macromol. Sci. Polym. Rev., 43, 223 (2003).

    Article  Google Scholar 

  3. H. Ortega-Ortiz, B. Gutierrez-Rodriguez, G. Cadenas-Pliego, and L. I. Jimenez, Braz. Arch. Biol. Technol., 53, 623 (2010).

    Article  Google Scholar 

  4. M. Joshi, S. W. Ali, R. Purwar, and S. Rajendran, Indian J. Fibre Text. Res., 34, 295 (2009).

    Google Scholar 

  5. R. A. Arain, Z. Khatri, M. H. Memon, and I.-S. Kim, Carbohydr. Polym. 96, 326 (2013).

    Article  Google Scholar 

  6. R. Purwar and M. Joshi, AATCC Rev., 4, 22 (2004).

    Google Scholar 

  7. M. M. Fouda, E. S. Abdel-Halim, and S. S. Al-Deyab, Carbohydr. Polym., 92, 943 (2013).

    Article  Google Scholar 

  8. T. Textor, M. M. Fouda, and B. Mahltig, Appl. Surf. Sci., 256, 2337 (2010).

    Article  Google Scholar 

  9. I. Chopra, J. Antimicrob. Chemother., 59, 587 (2007).

    Article  Google Scholar 

  10. R. Mahendra and Y. Alka, Biotechnol. Adv., 27, 76 (2009).

    Article  Google Scholar 

  11. H.-S. Bae, H.-W. Park, E.-J. Ryou, and K.-M. Jeong, J. Korean Soc. Cloth. Text., 32, 705 (2008).

    Google Scholar 

  12. M. Gouda and S. M. A. S. Keshk, Carbohydr. Polym., 80, 504 (2010).

    Article  Google Scholar 

  13. V. Thomas, M. Bajpai, and S. K. Bajpai, J. Ind. Text., 40, 229 (2011).

    Article  Google Scholar 

  14. Z. Hu, W. L. Chan, and Y. S. Szeto, J. Appl. Polym. Sci., 108, 52 (2008).

    Article  Google Scholar 

  15. A. S. Nateri, A. Oroumei, S. Dadvar, A. Fallah-Shojaie, G. H. Khayati, and O. Emamgholipur, J. Comput. Theor. Nanosci., 7, 1554 (2010).

    Article  Google Scholar 

  16. A. S. Nateri, S. Dadvar, A. Oroumei, and E. Ekrami, J. Comput. Theor. Nanosci., 8, 713 (2011).

    Article  Google Scholar 

  17. S. Lata, B. K. Sharma, and G. P. S. Raghava, BMC Bioinformatics, 8, 263 (2007).

    Article  Google Scholar 

  18. E. Akbari, Z. Buntat, A. Enzevaee, M. Ebrahimi, A. H. Yazdavar, and R. Yusof, Chemometrics Intell. Lab. Syst., 137, 173 (2014).

    Article  Google Scholar 

  19. J. Jaén-Oltra, M. T. Salabert-Salvador, F. J. García-March, F. Pérez-Giménez, and F. Tomás-Vert, J. Med. Chem., 43, 1143 (2000).

    Article  Google Scholar 

  20. M. N. Melo, R. Ferre, L. Feliu, E. Bardají, M. Planas, and N. A. R. B. Castanho, PLoSONE, 6, e28549 (2011).

    Article  Google Scholar 

  21. M. Wnuk, M. P. Marszall, A. Zapecka, A. Nowaczyk, J. Krysinski, J. Romaszko, P. Kawczak, T. Baczek, and A. Bucinski, Cent. Eur. J. Med., 8, 1 (2013).

    Article  Google Scholar 

  22. A. Hladnik and T. Muck, Dyes Pigment., 54, 253 (2002).

    Article  Google Scholar 

  23. Z. Zupin, A. Hladnik, and K. Dimitrovski, Text. Res. J., 82, 117 (2012).

    Article  Google Scholar 

  24. T. Hamdi, A. Ghith, and F. Fayala, Autex Res. J., 14, 22 (2014).

    Google Scholar 

  25. M. H. El-Rafie, A. A. Mohamed, T. I. Shaheen, and A. Hebeish, Carbohydr. Polym., 80, 779 (2010).

    Article  Google Scholar 

  26. B. Tomšic, B. Simoncic, B. Orel, M. Žerjav, H. Schroers, A. Simoncic, and Z. Samardžija, Carbohydr. Polym., 75, 618 (2009).

    Article  Google Scholar 

  27. S. W. Ali, S. Rajendran, and M. Joshi, Carbohydr. Polym., 83, 438 (2011).

    Article  Google Scholar 

  28. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. DeJong, P. J. Lewi, and J. Smeyers Verbeke, in “Handbook of Chemometrics and Qualimetrics: Part A” (D. L. Massart Eds.), pp.520–535, Elsevier, Amsterdam, 1997.

    Google Scholar 

  29. O. Nelles, “Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models”, 2nd ed., Springer New York, 2001.

    Book  Google Scholar 

  30. B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. Ö. Efe, Proc. IEEE IJCNN '01. USA, 3, 1778 (2001).

    Google Scholar 

  31. T. L. Fine, “Feedforward Neural Network Methodology”, Springer Verlag New York, 1999.

    Google Scholar 

  32. D. J. C. MacKay, Neural Comput., 4, 448 (1991).

    Google Scholar 

  33. F. D. Foresee and M. T. Hagan, Proc. IEEE IJCNN '97. USA, 3, 1930 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samander Ali Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S.A., Arain, R.A., Khatri, Z. et al. Neural network modeling and principal component analysis of antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric. Fibers Polym 16, 1142–1149 (2015). https://doi.org/10.1007/s12221-015-1142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1142-2

Keywords

Navigation