Skip to main content
Log in

Stabilization of the Critical Semilinear Klein–Gordon Equation in Compact Space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the internal stabilization and the boundary stabilization of the critical semilinear Klein–Gordon equation in compact space. The observability inequalities are proved by the Morawetz estimates on Riemannian manifold, and then the compactness–uniqueness arguments are used to prove the main stabilization results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloui, L., Ibrahim, S., Nakanishi, K.: Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth. Commun. Partial Differ. Equ. 36(5), 797–818 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bortot, C.A., Cavalcanti, M.M., Domingos Cavalcanti, V.N., Piccione, P.: Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds. Appl. Math. Optim. 78, 219–265 (2018)

    Article  MathSciNet  Google Scholar 

  3. Burq, N., Joly, R.: Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18(6), 2061–2079 (2016)

    Article  MathSciNet  Google Scholar 

  4. Burq, N., Planchon, F.: Global existence for energy critical waves in 3-d domains: Neumann boundary conditions. Am. J. Math. 131(6), 1715–1742 (2017)

    Article  MathSciNet  Google Scholar 

  5. Burq, N., Lebeau, G., Planchon, F.: Global existence for energy critical waves in 3-D domains. J. Am. Math. Soc. 21(3), 831–845 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bouclet, J.M., Royer, J.: Local energy decay for the damped wave equation. J. Funct. Anal. 266, 4538–4615 (2014)

    Article  MathSciNet  Google Scholar 

  7. Carvalho, A.N., Cholewa, J.W.: Local well posedness for strongly damped wave equations with critical nonlinearities. Bull. Aust. Math. Soc. 66(3), 443–463 (2002)

    Article  MathSciNet  Google Scholar 

  8. Carvalho, A.N., Cholewa, J.W.: Attractors for strongly damped wave equations with critical nonlinearities. Pac. J. Math. 207(2), 287–310 (2002)

    Article  MathSciNet  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N.: Existence and asymptotic stability for evolution problems on manifolds with damping and source terms. J. Math. Anal. Appl. 291(1), 109–127 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result. Arch. Ration. Mech. Anal. 197, 925–964 (2010)

    Article  MathSciNet  Google Scholar 

  12. Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36, 525–551 (2003)

    Article  MathSciNet  Google Scholar 

  13. Filippo, D., Pata, V.: Strongly damped wave equations with critical nonlinearities. Nonlinear Anal. 75(14), 5723–5735 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gong, C.: Multisolitons for the defocusing energy critical wave equation with potentials. Commun. Math. Phys. 364, 45–82 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journées "Équations aux Dérivées Partielles" (Plestin-les-Gréves,), Univ. Nantes, Exp. No. VI, 2001, p. 10 (2001)

  16. Hao, L., Yang, F.H., Ning, Z.H.: Stabilization of the critical semilinear wave equation with Dirichlet-Neumann boundary condition on bounded domain. J. Math. Anal. Aool. 506, 125610 (2022)

    Article  MathSciNet  Google Scholar 

  17. Jia, H., Liu, B., Xu, G.: Long time dynamics of defocusing energy critical 3 + 1 dimensional wave equation with potential in the radial case. Commun. Math. Phys. 339(2), 353–384 (2015)

  18. Jia, H., Liu, B., Schlag, W.: Generic and non-generic behavior of solutions to defocusing energy critical wave equation with potential in the radial case. Int. Math. Res. Not. IMRN 2017, 1–59 (2016)

    Google Scholar 

  19. Jean, F.: A semilinear wave equation on hyperbolic spaces. Comm. Partial Differ. Equ. 22(3–4), 633–659 (1997)

    Article  MathSciNet  Google Scholar 

  20. Joly, R., Laurent, C.: Stabilization for the semilinear wave equation with geometric control condition. Anal. Partial Differ. Equ. 6, 1089–1119 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Laurent, C.: On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold. J. Funct. Anal. 260(5), 1304–1368 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  Google Scholar 

  23. Lasiecka, I., Ong, J.: Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation. Commun. Partial Differ. Equ. 24(11–12), 2069–2107 (1999)

    Article  MathSciNet  Google Scholar 

  24. Lasiecka, I., Triggiani, R., Yao, P.F.: Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235(1), 13–57 (1999)

    Article  MathSciNet  Google Scholar 

  25. Liu, K.S.: Locally distributed control and damping for the conservative system. SIAM J. Control Optim. 35(5), 1574–1590 (1997)

    Article  MathSciNet  Google Scholar 

  26. Liu, Y.X., Yao, P.F.: Energy decay rate of the wave equations on Riemannian manifolds with critical potential. Appl. Math. Optim. 78, 61–101 (2018)

    Article  MathSciNet  Google Scholar 

  27. Morawetz, C.: Time decay for nonlinear Klein-Gordon equations. Proc. R. Soc. Lond. 306A, 503–518 (1968)

    MathSciNet  Google Scholar 

  28. Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305(3), 403–417 (1996)

    Article  MathSciNet  Google Scholar 

  29. Nakao, M.: Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations. Math. Z. 238(4), 781–797 (2001)

    Article  MathSciNet  Google Scholar 

  30. Ning, Z.H.: Asymptotic behavior of the nonlinear Schrödinger equation on exterior domain. Math. Res. Lett. 27(6), 1825–1866 (2020)

    Article  MathSciNet  Google Scholar 

  31. Ning, Z.H., Yang, F.Y., Zhao, X.P.: Escape metrics and its applications. http://arxiv.org/abs/1811.12668

  32. Ning, Z.H., Yang, F.Y. Wang, J.C.: Stabilization of the critical and subcritical semilinear inhomogeneous and anisotropic elastic wave equation. http://arxiv.org/abs/2007.00813

  33. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  Google Scholar 

  34. Rauch, J., Taylor, M.: Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)

    Article  MathSciNet  Google Scholar 

  35. Shen, R.P.: Energy-critical semi-linear shifted wave equation on the hyperbolic spaces. Differ. Integral Equ. 29, 738 (2016)

    MathSciNet  Google Scholar 

  36. Todorova, G.: Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. Nonlinear Anal. Ser. A 41(7–8), 891–905 (2000)

    Article  MathSciNet  Google Scholar 

  37. Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174(2), 464–489 (2001)

    Article  MathSciNet  Google Scholar 

  38. Todorova, G., Yordanov, B.: The energy decay problem for wave equations with nonlinear dissipative terms in \({\mathbb{R}}^n\). Indiana Univ. Math. J. 56(1), 389–416 (2007)

  39. Yao, P.F.: On the observability inequalities for the exact controllability of the wave equation with variable coefficients. SIAM J. Control Optim. 37(6), 1568–1599 (1999)

    Article  MathSciNet  Google Scholar 

  40. Yao, P.F.: Observability inequalities for the Euler-Bernoulli plate with variable coefficients. Contemp. Math. 268, 383–406 (2000)

    Article  MathSciNet  Google Scholar 

  41. Yao, P.F.: Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differ. Equ. 241(1), 62–93 (2007)

    Article  MathSciNet  Google Scholar 

  42. Yao, P.F.: Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation. Chin. Ann. Math. 31B(1), 59–70 (2010)

    Article  MathSciNet  Google Scholar 

  43. Yao, P.F.: Modeling and Control in Vibrational and Structural Dynamics. A Differential Geometric Approach, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL (2011)

    Google Scholar 

  44. Zuazua, E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Z.F., Yao, P.F.: Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks. SIAM J. Control Optim. 47(4), 2044–2077 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hu Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix for Unique Continuation

A Appendix for Unique Continuation

Proposition A.1

Assume that

$$\begin{aligned}&DH(X,X)\ge \delta |X|_g^2,\quad X\in {\mathbb {R}}^3_x, x\in {\overline{\Omega }},\end{aligned}$$
(6.1)
$$\begin{aligned}&{\,\mathrm div\,}_g H =\delta _1\end{aligned}$$
(6.2)

and

$$\begin{aligned} \langle H,\nu \rangle \ge \theta ,\quad x\in \Gamma ,\end{aligned}$$
(6.3)

where \(\delta ,\delta _1,\theta \) are positive constants. Then there exists \(T_0\ge 0\) such that for any \(T>T_0\), the only solution

$$\begin{aligned} (u,u_t)\in C\left( [0,T],H^1(\Omega )\times L^2(\Omega ) \right) \end{aligned}$$
(6.4)

to the system

$$\begin{aligned} {\left\{ \begin{array}{ll}u_{tt}-\Delta _g u+u+u^{5}=0\qquad (x,t)\in \Omega \times (0,T),\\ \displaystyle \frac{\partial u}{\partial \nu }=u_t=0\qquad (x,t)\in \Gamma \times (0,T),\end{array}\right. } \end{aligned}$$
(6.5)

is the trivial one \(u\equiv 0\).

Proof

It follows from (3.1) that

$$\begin{aligned} E(t)=E(0),\quad t>0. \end{aligned}$$
(6.6)

Let \({\mathcal {H}}=H\). Note that

$$\begin{aligned} {\,\mathrm div\,}_g\left( u^2 {\mathcal {H}}\right) =2u{\mathcal {H}}(u)+u^2{\,\mathrm div\,}_g {\mathcal {H}}.\end{aligned}$$
(6.7)

Then

$$\begin{aligned} \int _{\Gamma } u^2 \langle {\mathcal {H}},\nu \rangle _g \text {d}\Gamma _g = \int _{\Omega } \left( 2u{\mathcal {H}}(u)+u^2{\,\mathrm div\,}_g {\mathcal {H}}\right) \text {d}x_g. \end{aligned}$$
(6.8)

Therefore,

$$\begin{aligned} \int _{\Omega } u^2 \text {d}x_g \le C \int _{\Omega } \left| \nabla _g u\right| _g ^2 \text {d}x_g+ C \int _{\Gamma } u^2 \text {d}\Gamma _g. \end{aligned}$$
(6.9)

Note that

$$\begin{aligned}&\int _0^T\int _{\Gamma }\displaystyle \frac{\partial u}{\partial \nu }{\mathcal {H}}(u) \text {d}\Gamma _g \text {d}t+\frac{1}{2}\int _0^T\int _{\Gamma } \left( u_t^2-\left| \nabla _g u\right| _g ^2-u^2-\frac{1}{3}u^{6}\right) \langle {\mathcal {H}}, \nu \rangle _g \text {d}\Gamma _g \text {d}t\nonumber \\&\quad \le -\frac{\theta }{2}\int _0^T\int _{\Gamma } \left( \left| \nabla _g u\right| _g^2+u^2+\frac{1}{3}u^{6}\right) \text {d}\Gamma _g \text {d}t. \end{aligned}$$
(6.10)

It follows from (3.4) that

$$\begin{aligned}&0\ge \frac{\theta }{2}\int _0^T\int _{\Gamma } u^2\text {d}\Gamma _g \text {d}t+\int _{\Omega }u_tH(u)\text {d}x_g\Big |^T_0 +\int _0^T\int _{\Omega }\delta \left| \nabla _g u\right| _g^2 \text {d}x_g \text {d}t\nonumber \\&\quad +\frac{\delta _1}{3}\int _0^T\int _{\Omega } u^{6} \text {d}x_g \text {d}t+\frac{\delta _1}{2}\int _0^T\int _{\Omega }\left( u_t^2-\left| \nabla _g u\right| _g ^2-u^{2}-u^{6}\right) \text {d}x_g \text {d}t.\qquad \end{aligned}$$
(6.11)

With (6.9), for sufficiently small positive constant \(\delta _c\), we obtain

$$\begin{aligned}&0\ge \int _{\Omega }u_tH(u)\text {d}x_g\Big |^T_0 +\frac{\delta _c}{2}\int _0^T\int _{\Omega }\left( u_t^2+\left| \nabla _g u\right| _g ^2+u^{2}+u^{6}\right) \text {d}x_g \text {d}t\nonumber \\&\quad +\frac{\delta _1-\delta _c}{2}\int _0^T\int _{\Omega }\left( u_t^2-\left| \nabla _g u\right| _g ^2-u^{2}-u^{6}\right) \text {d}x_g \text {d}t. \end{aligned}$$
(6.12)

Let \(P=\frac{\delta _1-\delta _c}{2}\). Substituting (3.9) into (6.12), we obtain

$$\begin{aligned}&0\ge \int _{\Omega }u_t\left( {\mathcal {H}}(u)+Pu\right) \text {d}x_g\Big |^T_0\nonumber \\&\quad +\frac{\delta _c}{2}\int _0^T\int _{\Omega }\left( u_t^2+ |\nabla _g u|_g^2 +u^{2}+u^{6}\right) \text {d}x_g \text {d}t. \end{aligned}$$
(6.13)

Therefore,

$$\begin{aligned} \int _0^T E(t)\text {d}t \le CE(0), \end{aligned}$$
(6.14)

which implies

$$\begin{aligned} (T-C)E(0)\le 0.\end{aligned}$$
(6.15)

The assertion holds true. \(\square \)

The following lemma is given by Lemma 3.2 in [30].

Lemma A.1

Let \(H(x)=x\), then

$$\begin{aligned} DH(X,X)=\left\langle \left( G(x)+\frac{ r(x)}{2}\frac{\partial G(x)}{\partial r}\right) X,X\right\rangle ,\quad \text {for}\ \ X\in {\mathbb {R}}^3_x, x \in {\mathbb {R}}^3. \end{aligned}$$
(6.16)

The assumptions (6.1), (6.2) and (6.3) can be checked in view of the metric g as follows.

Example A.1

Let \(G(x)=diag\{ \alpha _1(x),\alpha _2(x),\alpha _3(x)\}\), where \(\alpha _i(x)(i=1,2,3)\) is a smooth positive function defined on \({\mathbb {R}}^3\). Assume that for \(i=1,2,3\)

$$\begin{aligned}&\frac{1}{\alpha _i(x) }\times \frac{ r}{2 }\frac{\partial \alpha _i(x)}{\partial r} \ge \delta -1 \quad for \quad x\in \Omega , \end{aligned}$$
(6.17)
$$\begin{aligned}&\sum _{i=1}^3\frac{1}{\alpha _i(x) }\times \frac{ r}{2 }\frac{\partial \alpha _i(x)}{\partial r}=\delta _1-3 \quad for \quad x\in \Omega , \end{aligned}$$
(6.18)

A concise example to check (6.17) and (6.18) is \(\alpha _i(x)=r^{c_i}\), where \(c_i\ge 2(\delta -1)\) and \(\sum _{i=1}^3c_i=2(\delta _1-3)\).

Let \(H=x\) and \(X=(X_1,X_2,X_3)^T \in {\mathbb {R}}^3\) . Then it follows from Lemma A.1 that

$$\begin{aligned} DH(X,X)= & {} \left\langle \left( G(x)+\frac{ r}{2}\frac{\partial G(x)}{\partial r}\right) X,X \right\rangle \nonumber \\= & {} \sum _{i=1}^3 \left( \alpha _i(x) + \frac{ r}{2 }\frac{\partial \alpha _i(x)}{\partial r} \right) X_i^2\nonumber \\\ge & {} \delta \sum _{i=1}^3 \alpha _i(x) X_i^2 \nonumber \\= & {} \delta |X|_g^2 \quad for \quad X\in {\mathbb {R}}^3_x,\ \ x\in \Omega , \end{aligned}$$
(6.19)
$$\begin{aligned} {\,\mathrm div\,}_g H= & {} \frac{1}{\sqrt{\hbox {det }(G(x))}} {\,\mathrm div\,}\left( \sqrt{\hbox {det }(G(x))} H\right) \nonumber \\= & {} 3+\frac{r}{2} \frac{\partial \ln (\hbox {det }(G(x)) ) }{\partial r}\nonumber \\= & {} 3+ \sum _{i=1}^3\frac{1}{\alpha _i(x) }\cdot \frac{ r}{2 }\frac{\partial \alpha _i(x)}{\partial r} . \nonumber \\= & {} \delta _1 \quad for \quad x\in \Omega . \end{aligned}$$
(6.20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ning, ZH. Stabilization of the Critical Semilinear Klein–Gordon Equation in Compact Space. J Geom Anal 32, 249 (2022). https://doi.org/10.1007/s12220-022-00973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00973-5

Keywords

Mathematics Subject Classification

Navigation