Skip to main content
Log in

On Certain Commutator Estimates for Vector Fields

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A unifying approach for proving certain commutator estimates involving smooth, not-necessarily divergence-free vector fields is introduced and implemented in the scales of weighted Triebel–Lizorkin and Besov spaces and certain variable exponent Triebel–Lizorkin and Besov spaces. Such commutator estimates are motivated by the study of well-posedness results for some models in incompressible fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 1628–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, K., John, R.: Weighted inequalities for vector-valued maximal functions and singular integrals. Stud. Math. 69(1):19–31 (1980/1981)

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  4. Benedek, A., Panzone, R.: The space \(L^{p}\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D.: On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55(5), 654–678 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chemin, J-Y.: Fluides parfaits incompressibles. Astérisque (230):177, (1995)

  7. Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces. Arch. Ration. Mech. Anal. 195(2), 561–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013) (Foundations and harmonic analysis)

  9. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Cruz-Uribe, D., Naibo, V.: Kato–Ponce inequalities on weighted and variable Lebesgue spaces. Differ. Integral Equ. 29(9–10), 801–836 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Danchin, R.: Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients. Rev. Mat. Iberoamericana 21(3), 863–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin, R.: Uniform estimates for transport-diffusion equations. J. Hyperbolic Differ. Equ. 4(1), 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin, R.: Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics. Proc. Am. Math. Soc. 141(6), 1979–1993 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diening, L., Harjulehto, P., Hästö, P., Rüžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  15. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI (2001). Translated and revised from the 1995 Spanish original by David Cruz-Uribe

  17. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics, vol. 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1991)

  20. Gurka, P., Harjulehto, P., Nekvinda, A.: Bessel potential spaces with variable exponent. Math. Inequal. Appl. 10(3), 661–676 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Hart, J.: Bilinear square functions and vector-valued Calderón–Zygmund operators. J. Fourier Anal. Appl. 18(6), 1291–1313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maldonado, D., Naibo, V.: On the boundedness of bilinear operators on products of Besov and Lebesgue spaces. J. Math. Anal. Appl. 352(2), 591–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, No. 1. Mathematics Department, Duke University, Durham, NC (1976)

    MATH  Google Scholar 

  25. Qui, B.H.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12(3), 581–605 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Takada, R.: Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type. J. Evol. Equ. 8(4), 693–725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

  28. Wu, J., Xu, X., Ye, Z.: Global smooth solutions to the \(n\)-dimensional damped models of incompressible fluid mechanics with small initial datum. J. Nonlinear Sci. 25(1), 157–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: The relation between variable Bessel potential spaces and Triebel–Lizorkin spaces. Integral Transforms Spec. Funct. 19(7–8), 599–605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, J.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33(2), 511–522 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author is supported by the NSF under Grant DMS 1500381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Naibo.

Appendix

Appendix

Proof of Remark 1

Let \(\psi _j\), \(\Delta _j\), and \(\Phi _j^N\) be as defined in the previous sections; assume without loss of generality that \(\psi (0)\ne 0.\) Let \(f\in \dot{F}_{p}^{s,q}(w)\cap {\mathcal {S}}({{\mathbb R}^n})\). We have

$$\begin{aligned}&\left\| f\right\| _{ \dot{F}_{p}^{s,q}(w)}\ge \left| \int _{\mathbb R^n}f(y)\mathrm{d}y\right| \left( \int _{\mathbb R^n}\left( \sum _{j<0}\left[ 2^{sj}|\psi _j(x)|\right] ^q\right) ^{\frac{p}{q}}w(x)\,\mathrm{d}x\right) ^{\frac{1}{p}}\nonumber \\&\quad -\left( \int _{\mathbb R^n}\left( \sum _{j<0}2^{sqj}\left| \int _{\mathbb R^n}(\psi _j(x-y)-\psi _j(x))f(y)\mathrm{d}y\right| ^q\right) ^{\frac{p}{q}}w(x)\,\mathrm{d}x\right) ^{\frac{1}{p}}. \end{aligned}$$

Note that for \(j<0,\)

$$\begin{aligned} \left| \int _{\mathbb R^n}(\psi _j(x-y)-\psi _j(x))f(y)\mathrm{d}y\right| \lesssim 2^j\Phi _j^n(x)\le \frac{2^{j}}{(2^{-j}+|x|)^n}\le \frac{2^{j}}{(1+|x|)^n}, \end{aligned}$$

and hence we have

$$\begin{aligned}&A:=\int _{\mathbb R^n}\left( \sum _{j<0}2^{sqj}\left| \int _{\mathbb R^n}(\psi _j(x-y)-\psi _j(x))f(y)\mathrm{d}y\right| ^q\right) ^{\frac{p}{q}}w(x)\mathrm{d}x\\&\quad \lesssim \left( \sum _{j<0}2^{(1+s)qj} \right) ^{\frac{p}{q}}\int _{\mathbb R^n}\frac{w(x)}{(1+|x|)^{pn}}\,\mathrm{d}x<\infty , \end{aligned}$$

where we have used that \(s+1>0\) and \(w\in A_p.\) Since \(\eta :=|\psi (0)|>0,\) there exists \(0<\delta <1\) such that \(|\psi _j(x)|\ge 2^{jn}\eta /2\) for \(2^j|x|<\delta \). Then

$$\begin{aligned}&\int _{\mathbb R^n}\left( \sum _{j<0}\left[ 2^{sj}|\psi _j(x)|\right] ^q\right) ^{\frac{p}{q}}w(x)\mathrm{d}x\ge \int _{\mathbb R^n}\sup _{j<0}\left( 2^{sj}|\psi _{j}(x)|\right) ^pw(x)\,\mathrm{d}x\\&\quad \ge (\eta /2)^p\sup _{j<0}2^{(n+s)pj}\int _{|x|<2^{-j}\delta }w(x)\,\mathrm{d}x\\&\quad =(\eta /2)^p\delta ^{(n+s)p}\sup _{j<0}\frac{1}{(\delta 2^{-j})^n}\int _{|x|<2^{-j}\delta }w(x)(\delta 2^{-j})^{\left( \frac{1}{p}-\frac{n+s}{n}\right) pn}\,\mathrm{d}x\\&\quad \ge (\eta /2)^p\delta ^{(n+s)p}\sup _{j<0}\frac{1}{(\delta 2^{-j})^n}\int _{|x|<2^{-j}\delta }w(x)|x|^{\left( \frac{1}{p}-\frac{n+s}{n}\right) pn}\,\mathrm{d}x=\infty , \end{aligned}$$

where we have used (5.4). It follows that

$$\begin{aligned} \left| \int _{\mathbb R^n}f(y)\mathrm{d}y\right| ^p\left[ \int _{\mathbb R^n}\left( \sum _{j<0}\left[ 2^{sj}|\psi _j(x)|\right] ^q\right) ^{\frac{p}{q}}w(x)\,\mathrm{d}x\right] \lesssim ||f||_{\dot{F}_p^{s,q}(w)}^p+A<\infty . \end{aligned}$$
(6.4)

The term in the square brackets on the left-hand side of (6.4) is infinite. Hence the only way to avoid a contradiction is if f has integral zero.

We next check that \(w\ge u^\epsilon \) for some \(u\in A_1\) and \(0<\epsilon <1-p\frac{n+s}{n}\) is sufficient for (5.4). Since \(u\in A_1\), it follows that \(u(x)\gtrsim \mathcal M(u)(x)\gtrsim (1+|x|)^{-n}\). Then \(w(x)\gtrsim (1+|x|)^{-n\epsilon }\) and

$$\begin{aligned} \frac{1}{R^n}\int _{B(0,R)}w(x)|x|^{pn(\frac{1}{p}-\frac{n+s}{n})}\mathrm{d}x&\gtrsim \frac{1}{R^n}\int _{1<|x|<R} |x|^{-n\epsilon }|x|^{pn(\frac{1}{p}-\frac{n+s}{n})}\mathrm{d}x \end{aligned}$$

which tends to infinity as R tends to infinity since \(0<\epsilon <1-p\frac{n+s}{n}.\) \(\square \)

Proof of Lemma 6.1

The proof follows the ideas from [4, Theorems 1 and 2].

We first prove (6.2). Let \({p(\cdot )},\) q, and \(f=\{f_j\}_{j\in \mathbb {Z}}\) be as in the assumptions. We will use the fact that \(\rho _{p(\cdot )}\left( F/\left\| F\right\| _{L^{p(\cdot )}}\right) =1\) if \(F\in L^{p(\cdot )}\) and \(\left\| F\right\| _{L^{p(\cdot )}}\ne 0.\) (See [8, Proposition 2.21] for a proof.) It is enough to show that

$$\begin{aligned} \left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}\le \sup _{\{h_j\}\in \mathcal {U}_{{p'(\cdot )}, {q'}}}\int _{{\mathbb R}^n}\sum _{j\in \mathbb {Z}} \left| f_j(x)h_j(x) \right| \, \mathrm{{d}}x\end{aligned}$$
(6.5)

since the reverse estimate is a consequence of Hölder’s inequality.

Suppose first that \(1\le q<\infty \) and \(0<\left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}<\infty ;\) define

$$\begin{aligned} h_j(x)=\text {sign}(f_j(x))\left| f_j(x) \right| ^{q-1}\left( \sum _{k\in \mathbb {Z}}\left| f_k(x) \right| ^q\right) ^{\frac{p(x)-q}{q}}\left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}^{1-p(x)}. \end{aligned}$$

We have that \( \rho _{p'(\cdot )}\left( \left( \sum _{j\in \mathbb {Z}}\left| h_j \right| ^{q'}\right) ^{\frac{1}{q'}}\right) =\rho _{p(\cdot )}\left( \frac{\left( \sum _{j\in \mathbb {Z}}\left| f_j \right| ^{q}\right) ^\frac{1}{q}}{\left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}}\right) =1, \) where corresponding changes in notation apply if \(q'=\infty .\) By the definition of the \(L^{p'(\cdot )}\) norm, we obtain that \( \left\| \{h_j\}_{j\in \mathbb {Z}}\right\| _{L^{p'(\cdot )}(\ell ^{q'})}\le 1. \) Moreover,

$$\begin{aligned} \int _{{{\mathbb R}^n}}\sum _{j\in \mathbb {Z}} \left| f_j(x)h_j(x) \right| \, \mathrm{{d}}x&=\left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}, \end{aligned}$$

from which (6.5) follows.

When \(q=\infty \) and \(0<\left\| f\right\| _{L^{p(\cdot )}(\ell ^\infty )}<\infty ,\) suppose first that \(f_j=0\) for \(\left| j \right| \ge N_0\) for some \(N_0\in \mathbb {N}.\) For \(\varepsilon >0\) and \(x\in {{\mathbb R}^n},\) set \(F_\varepsilon (x)=\left\{ j\in \mathbb {Z}:\left| f_j(x) \right| >\frac{1}{1+\varepsilon }\sup _{k\in \mathbb {Z}}\left| f_k(x) \right| \right\} \) and

$$\begin{aligned} h_{j,\varepsilon }(x)=\text {sign}(f_j(x))g_{j,\varepsilon }(x)\left( \sup _{k\in \mathbb {Z}}\left| f_k(x) \right| \right) ^{p(x)-1}\left\| f\right\| _{L^{p(\cdot )}(\ell ^\infty )}^{1-p(x)}, \end{aligned}$$

where \(g_{j,\varepsilon }(x)=\frac{\chi _{F_\varepsilon (x)}(j)}{\#(F_\varepsilon (x))}\) if \(\#(F_\varepsilon (x))\ne 0\) and \(g_{j,\varepsilon }(x)=0\) otherwise. It follows that \(\left\| \{h_{j,\varepsilon }\}_{j\in \mathbb {Z}}\right\| _{L^{p'(\cdot )}(\ell ^1)}\le 1\) and that

$$\begin{aligned} \int _{{{\mathbb R}^n}}\sum _{j\in \mathbb {Z}}\left| f_j(x)h_{j,\varepsilon }(x) \right| \,\mathrm{d}x&\ge \frac{1}{1+\varepsilon }\left\| f\right\| _{L^{p(\cdot )}(\ell ^\infty )}. \end{aligned}$$

Since \(\varepsilon \) is arbitrary, we get the desired result. We next remove the assumption that \(f_j=0\) if \(\left| j \right| \ge N_0;\) for \(N\in \mathbb {N},\) set \(f_{j,N}=f_j\) if \(\left| j \right| \le N\) and \(f_{j,N}=0\) if \(\left| j \right| >N.\) By the previous case, we have

$$\begin{aligned} \left\| \{f_{j,N}\}_{j\in \mathbb {Z}}\right\| _{L^{p(\cdot )}(\ell ^\infty )}\le \sup _{\{h_j\}\in \mathcal {U}_{{p'(\cdot )},1}}\int _{{\mathbb R}^n}\sum _{j\in \mathbb {Z}} \left| f_j(x)h_j(x) \right| \, \mathrm{{d}}x\quad \forall N\in \mathbb {N}. \end{aligned}$$

Since \(\sup _{j\in \mathbb {Z}}\left| f_{j,N}(x) \right| \uparrow \sup _{j\in \mathbb {Z}}\left| f_j(x) \right| \) as \(N\rightarrow \infty \) and for all \(x\in {{\mathbb R}^n},\) the Monotone Convergence Theorem in the setting of variable Lebesgue spaces (see [8, Theorem 2.59]) and the above estimate imply (6.5).

Suppose now that \(\left\| f\right\| _{L^{p(\cdot )}(\ell ^q)}=\infty ;\) for each \(N\in \mathbb {N}\) define \(I_{N}=\{j\in \mathbb {Z}:\left| j \right| \le N\}\times \{x\in {{\mathbb R}^n}:\left| x \right| \le N\}\) and \(f^{N}_j(x)=f_j(x)\chi _{I_{N}}(j,x)\) if \(\left| f_j(x)\chi _{I_{N}}(j,x) \right| <N\) and \(f^{N}_j(x)=N,\) otherwise. Since \(f^{N}=\{f_j^{N}\}_{j\in \mathbb {Z}}\) satisfies \(\left\| f^{N}\right\| _{L^{p(\cdot )}(\ell ^q)}<\infty ,\) then

$$\begin{aligned} \left\| f^{N}\right\| _{L^{p(\cdot )}(\ell ^q)}\le \sup _{\{h_j\}\in \mathcal {U}_{{p'(\cdot )}, {q'}}}\int _{{\mathbb R}^n}\sum _{j\in \mathbb {Z}} \left| f_j(x)h_j(x) \right| \, \mathrm{{d}}x. \end{aligned}$$

Since \(\left\| \{f_j^{N}(x)\}_{j\in \mathbb {Z}}\right\| _{\ell ^q}\uparrow \left\| \{f_j(x)\}_{j\in \mathbb {Z}}\right\| _{\ell ^q}\) as \(N\rightarrow \infty \) for \(x\in {{\mathbb R}^n},\) the Monotone Convergence Theorem for variable Lebesgue spaces and the last inequality imply (6.5).

The proof of (6.3) is similar; we briefly indicate the corresponding main changes. As in the proof of (6.2), it is enough to show the analogous inequality to (6.5).

In the case \(1\le q<\infty \) and \(0<\left\| f\right\| _{\ell ^q(L^{p(\cdot )})}<\infty \) define

$$\begin{aligned} h_j(x)=\text {sign}(f_j(x))\left| f_j(x) \right| ^{p(x)-1}\left\| f_j\right\| _{L^{p(\cdot )}}^{q-p(x)}\left\| f\right\| _{\ell ^q(L^{p(\cdot )})}^{1-q}. \end{aligned}$$

For the case \(q=\infty \) and \(0<\left\| f\right\| _{\ell ^\infty (L^{p(\cdot )})}<\infty \), assume first that \(f_j=0\) for \(\left| j \right| \ge N_0\) for some \(N_0\in \mathbb {N}.\) Given \(\varepsilon >0,\) define \(F_\varepsilon =\left\{ j\in \mathbb {Z}:\left\| f_j\right\| _{L^{p(\cdot )}}>\frac{1}{1+\varepsilon }\left\| f\right\| _{\ell ^\infty (L^{p(\cdot )})}\right\} \) and set

$$\begin{aligned} h_{j,\varepsilon }(x)=\text {sign}(f_j(x))\frac{\chi _{F_\varepsilon }(j)}{\#(F_\varepsilon )} \left| f_j(x) \right| ^{p(x)-1}\left\| f_j\right\| _{L^{p(\cdot )}}^{1-p(x)}. \end{aligned}$$

The limiting arguments used to remove the assumption \(f_j=0\) for \(\left| j \right| \ge N_0\) in the case \(q=\infty \) and for the case \(\left\| f\right\| _{\ell ^q(L^{p(\cdot )})}=\infty \) are analogous to the ones used for (6.5). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, J., Naibo, V. On Certain Commutator Estimates for Vector Fields. J Geom Anal 28, 1202–1232 (2018). https://doi.org/10.1007/s12220-017-9859-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9859-3

Keywords

Mathematics Subject Classification

Navigation