Skip to main content
Log in

A Factorization Theorem for Curves with Vanishing Self-Intersection

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let C be a connected divisor in a compact Kähler manifold such that the self-intersection of C, computed with respect to a Kähler metric, vanishes. Assume that the normal closure of the image of \(\pi _{1}(C)\) in \(\pi _{1}(Y)\) has infinite index. Then there exists a holomorphic map f from Y to a curve B such that C is a fiber. The conclusion holds if one assumes that the image of \(\pi _{1}(C)\) is amenable but \(\pi _{1}(Y)\) is non-amenable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I thank G. Carron for providing these references.

  2. The \(S^{r-1}(\tilde{X},\Lambda ^{l-1})\) in this lemma should be corrected as \(S^{r+1}(\tilde{X},\Lambda ^{l-1})\).

  3. See Appendix 2.

References

  1. Aleksandrov, Aleksandr G.: Logarithmic differential forms, torsion differentials and residue. Complex Var. Theory Appl. 50(7–11), 777–802 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Amorós, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D.: Fundamental groups of compact Kähler manifolds. Mathematical Surveys and Monographs, vol. 44. American Mathematical Society, Providence, RI (1996)

  3. Andreotti, Aldo, Vesentini, Edoardo: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math. 25, 81–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arapura, D., Bressler, P., Ramachandran, M.: On the fundamental group of a compact Kähler manifold. Duke Math. J. 68(3), 477–488 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. In: Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974). Astérisque, No. 32–33, pp. 43–72. Soc. Math. France, Paris (1976)

  6. Barlet, D.: Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie. In: Fonctions de Plusieurs Variables Complexes, II (Sém. François Norguet, 1974–1975). Lecture Notes in Mathematics, vol. 482, pp. 1–158. Springer, Berlin (1975)

  7. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],vol. 4, 2nd edn. Springer-Verlag, Berlin (2004)

  8. Bérard, Pierre, Castillon, Philippe: Spectral positivity and Riemannian coverings. Bull. Lond. Math. Soc. 45(5), 1041–1048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertin, J., Demailly, J.-P., Illusie, L., Peters, C.: Introduction to Hodge theory, vol. 8 of SMF/AMS texts and monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2002) (Translated from the 1996 French original by James Lewis and Peters)

  10. Bott, R., Loring, W.T.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer-Verlag, New York-Berlin (1982)

  11. Brooks, R.: The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56(4), 581–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campana, F.: Negativity of compact curves in infinite covers of projective surfaces. J. Algebr. Geom. 7(4), 673–693 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Campana, Frédéric: Remarques sur le revêtement universel des variétés kählériennes compactes. Bull. Soc. Math. France 122(2), 255–284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campana, Frédéric, Demailly, Jean-Pierre: Cohomologie \(L^2\) sur les revêtements d’une variété complexe compacte. Ark. Math. 39(2), 263–282 (2001)

    Article  Google Scholar 

  15. Carlson, James A., Toledo, Domingo: Harmonic mappings of Kähler manifolds to locally symmetric spaces. Inst. Hautes Études Sci. Publ. Math. 69, 173–201 (1989)

    Article  MATH  Google Scholar 

  16. Carron, G.: \(l^{2}-\)harmonic forms on non compact manifolds. arXiv:0704.3194

  17. Cheeger, Jeff, Gromov, Mikhael: Bounds on the von Neumann dimension of \(L^2\)-cohomology and the Gauss-Bonnet theorem for open manifolds. J. Differ. Geom. 21(1), 1–34 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Rham, G.: Differentiable manifolds, vol. 266 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, (1984) (Forms, currents, harmonic forms, Translated from the French by F. R. Smith, with an introduction by S. S. Chern)

  19. Deligne, P.: Thorie de hodge II. Publ. Math. I.H.E.S 40, 5–58 (1971)

    Article  MATH  Google Scholar 

  20. Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory. In: Complex analysis and geometry, Univ. Ser. Math., pp. 115–193. Plenum, New York (1993)

  21. Dingoyan, Pascal: Some mixed Hodge structures on \(l^2\)-cohomology groups of coverings of Kähler manifolds. Math. Ann. 357(3), 1119–1174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eilenberg, Samuel, MacLane, Saunders: Relations between homology and homotopy groups of spaces. Ann. Math. 2(46), 480–509 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eyssidieux, Philippe: Invariants de von Neumann des faisceaux analytiques cohérents. Math. Ann. 317(3), 527–566 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gabriel, Pierre: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaffney, Matthew P.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. 2(60), 140–145 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grauert, H., Peternell, T., Remmert, R. eds. Several complex variables. VII. Encyclopaedia of Mathematical Sciences, vol. 74. Springer-Verlag, Berlin (1994) (Sheaf-theoretical methods in complex analysis, A reprint of ıt Current problems in mathematics. Fundamental directions. vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow)

  27. Gromov, M.: Kähler hyperbolicity and \(L_2\)-Hodge theory. J. Differ. Geom. 33(1), 263–292 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurjar, R.V., Kolte, S.: Fundamental group of some genus-2 fibrations and applications. Internat. J. Math., 23(8):1250080, 20 (2012)

  29. Gurjar, R.V., Purnaprajna, B.P.: On the Shafarevich conjecture for genus-2 fibrations. Math. Ann. 343(4), 791–800 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hatcher, Allen: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  31. Huybrechts, D.: Complex Geometry. An Introduction (Universitext). Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  32. Kazama, Hideaki, Takayama, Shigeharu: \(\partial \overline{\partial }\)-problem on weakly \(1\)-complete Kähler manifolds. Nagoya Math. J. 155, 81–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kollár, János: Shafarevich Maps and Automorphic Forms. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (1995)

    Book  MATH  Google Scholar 

  34. Lieberman, D.I.: Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds. In: Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977). Lecture Notes in Math, vol. 670, pp. 140–186. Springer, Berlin (1978)

  35. Lück, W.: \(L^2\)-Invariants: Theory and Applications to Geometry and \(K\)-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44. Springer-Verlag, Berlin (2002)

  36. Murray, F.J., Neumann, J.Von: On rings of operators. Ann. Math. (2) 37(1), 116–229 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  37. Napier, T., Ramachandran, M.: Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems. Geom. Funct. Anal. 5(5), 809–851 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Napier, T., Ramachandran, M.: Hyperbolic Kähler manifolds and proper holomorphic mappings to Riemann surfaces. Geom. Funct. Anal. 11(2), 382–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Napier, Terrence, Ramachandran, Mohan: The \(L^2 \overline{\partial }\)-method, weak Lefschetz theorems, and the topology of Kähler manifolds. J. Am. Math. Soc. 11(2), 375–396 (1998)

    Article  MATH  Google Scholar 

  40. Nori, Madhav V.: Zariski’s conjecture and related problems. Ann. Sci. École Norm. Sup. (4) 16(2), 305–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pereira, J.V.: Fibrations, divisors and transcendental leaves. J. Algebraic Geom. 15(1):87–110 (2006) (With an appendix by Laurent Meersseman)

  42. Ramachandran, Mohan: A Bochner-Hartogs type theorem for coverings of compact Kähler manifolds. Commun. Anal. Geom. 4(3), 333–337 (1996)

    Article  MATH  Google Scholar 

  43. John R.: An Index Theorem on Open Manifolds. I, II. J. Differential Geom. 27(1): 87–113, 115–136 (1988)

  44. Saito, Kyoji: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math 27(2), 265–291 (1980)

    MathSciNet  MATH  Google Scholar 

  45. Shubin, M.A.: Spectral theory of elliptic operators on noncompact manifolds. Astérisque 5(207), 35–108 (1992) (Méthodes semi-classiques, Vol. 1 (Nantes, 1991))

  46. Shubin, M.A.: \(L^2\) Riemann-Roch theorem for elliptic operators. Geom. Funct. Anal. 5(2), 482–527 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, Karl: Analytische Zerlegungen komplexer Räume. Math. Ann. 132, 63–93 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tapie, S.: Graphes, moyennabilité et bas du spectre de variétés topologiquement infinies. arXiv:1001.2501

  49. Totaro, B.: The topology of smooth divisors and the arithmetic of abelian varieties. Michigan Math. J., 48:611–624 (2000) (Dedicated to William Fulton on the occasion of his 60th birthday)

  50. Ueda, T.: On the neighborhood of a compact complex curve with topologically trivial normal bundle. J. Math. Kyoto Univ. 22(4), 583–607 (1982/1983)

  51. Vaš, Lia: Torsion theories for finite von Neumann algebras. Comm. Algebra 33(3), 663–688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I warmly thank F.Campana for discussions around this subject. He is at the root of the question and discussions with him lead to some of the conclusions. My contribution is mainly technical. I thank also the complex analysis team of Nancy for its pleasant welcome to its seminar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dingoyan.

Additional information

À la mémoire de Gennadi Henkin.

Appendices

Appendix 1

In this section, we prove a version of the Galois \(\partial {\overline{\partial }}\)-lemma for uniform Sobolev spaces, in particular currents with compact support. This will complete the exposition given in [21] where the domains of the operators were left unprecise.

1.1 Appendix 1.1: Preliminaries

We follow the notations of [21, Sect. 3.2]. Complements and references should be find in [43, 46].

Let \( X\rightarrow Y\) be a Galois covering of a compact Kähler manifold Y, let \(\Gamma \) be the covering transformations group, let \(\Lambda ^{p}:=\Lambda ^{p}T^{*}X\) be the vector bundle of p-forms. The Laplace operator \(\Delta \) is essentially self-adjoint on \(L^{2}( X,\oplus _{p}\Lambda ^{p})\) and \({\mathrm {Dom}}(\Delta _{\max })={\mathrm {Dom}}(\Delta _{\min })=S^{2}_{2}( X)\) is the uniform sobolev space of order two on X. Let \(\partial ^{*}_{f}\) (resp. \({\overline{\partial }}^{*}_{f}\)) be the formal adjoint of \(\partial \) (resp. \({\overline{\partial }}\)) and let S be one of the operator \(\partial +\partial ^{*}_{f}\) or \({\overline{\partial }}+{\overline{\partial }}^{*}_{f}\). Then \(S: L^{2}( X,\oplus _{p}\Lambda ^{p})\rightarrow L^{2}( X,\oplus _{p}\Lambda ^{p})\) is essentially self-adjoint and \(S^{2}=\Delta \) for the metric is Kähler and complete. In particular \({\mathrm {Dom}}(\Delta )\subset {\mathrm {Dom}}(S)\).

Let \(A=(1+S^{2})^{\frac{1}{2}}:L^{2}( X,\oplus _{p}\Lambda ^{p})\rightarrow L^{2}( X,\oplus _{p}\Lambda ^{p})\) be defined through the functional calculus. Then \(A^{m}:S^{k}(X,\oplus _{p}\Lambda ^{p})\rightarrow S^{k-m}(X,\oplus _{p}\Lambda ^{p})\) defines an isomorphism (see e.g., [43, Th. 5.5]).

For \(s\in {\mathbb {R}}\), let \((H^{s},||.||_{s})=({\mathrm {Dom}}(A^{s}), ||A^{s}.||_{L^{2}})\) be the completion of the space of the smooth sections with compact support with respect to the Sobolev norm \(||\alpha ||_{s}=||A^{s}\alpha ||_{L^{2}}\). Let \(s\in {\mathbb {R}}\), the following isomorphism holds \((S^{j}( X,\oplus _{p}\Lambda ^{p}),\, ||.||_{S^{j}( X,\oplus _{p}\Lambda ^{p})}) \overset{\sim }{\rightarrow } (H^{s},||.||_{s})\).

Then \(A^{k}: H^{s+k}\rightarrow H^{s}\) is bounded with adjoint \(A^{-k}\) and \(\cap _{s\in {\mathbb {R}}}H^{s}\) is dense in any \(H^{p}\). Let B be one of the four operators \(\partial \), \({\overline{\partial }}\), \({\overline{\partial }}^{*}_{f}\), \(\partial ^{*}_{f}\). Then B commutes to \(A^{s}\) on smooth sections with compact support, for \(A^{s}\) is a weak limit of a sequence of polynomial in \(\Delta \). Hence \(\forall s\in {\mathbb {R}}\), B extends uniquely as \(B_{s}:H_{s}\rightarrow H_{s-1}\) such that \(A^{k}B_{s}=B_{s-k}A^{k}\) on \(H^{s}\). Moreover \((\partial _{s})^{*}=A^{-1} (\partial ^{*}_{f})_{s}A^{-1}=A^{-2} (\partial ^{*}_{f})_{s-1}\) and \(({\overline{\partial }}_{s})^{*}=A^{-1} ({\overline{\partial }}^{*}_{f})_{s}A^{-1}=A^{-2}({\overline{\partial }}^{*}_{f})_{s-1}\). This last point uses that \(H^{1}\subset {\mathrm {Dom}}(S)\) and that the formal adjoint is equal to the Hilbertian adjoint.

These commutation relations granted, we will drop the indice s referring to the extension of these operators to the uniform Sobolev spaces \(H^{s}\).

Recall ([17, p. 9], [35, 46]) that a unbounded \(\Gamma \)-operator \(f: A_{1}\rightarrow A_{2}\) is \(\Gamma \)-Fredholm if for some \(\lambda _{0}>0\) the spectral projection \(E_{\lambda _{0}}\) of the operator \(ff^{*}+f^{*}f:A_{1}\oplus A_{2}\rightarrow A_{1}\oplus A_{2}\) satisfies \(\dim _{\Gamma }E(\lambda _{0})<+\infty \).

Theorem 6.1

(Atiyah [5], see also [17], [35, Lemma 2.66], [46])

  1. (i)

    The operator \(\Delta \) is \(\Gamma \)-Fredholm: for any \(\lambda >0\), let \(E_{\lambda }\) be the spectral projection of \(\Delta \) on the interval \([0,\lambda ]\). Then

    $$\begin{aligned} \dim _{\Gamma }E_{\lambda }L^{2}(X,\oplus _{p}\Lambda ^{p})<+\infty . \end{aligned}$$
  2. (ii)

    The operators \({\overline{\partial }}+{\overline{\partial }}^{*}: H^{s}\rightarrow H^{s-1}\) and \(\partial +\partial ^{*}: H^{s}\rightarrow H^{s-1}\) are \(\Gamma \)-Fredholm.

The second assertion is reduced to the first for \(S^{*}S=\Delta (1+\Delta )^{-1}\) is \(\Gamma \)-Fredholm by i).

1.2 Appendix 1.2: A Galois \(\partial {\overline{\partial }}\)-Lemma for Currents

Theorem 6.2

(A Galois \(\partial {\overline{\partial }}\)-lemma) Let \(X\rightarrow X/\Gamma =Y\) be a Galois covering of a compact Kähler manifold Y with Galois group \(\Gamma \). Let \(s\in {\mathbb {R}}\) and \(\alpha \) be a (pq)-form in \(H^{s}\) which is closed and orthogonal to the square integrable harmonic forms. Then there exists \(r\in \text {M}(\Gamma )\) almost invertible (i.e., injective with dense range) and a \((p-1,q-1)\)-form \(u\in H^{s+2}\) such that

$$\begin{aligned} r.\alpha= & {} \partial {\overline{\partial }}u. \end{aligned}$$

Proof

The form \(\alpha \) is both \({\overline{\partial }}\) and \(\partial \)-closed for it is d-closed of pure type. Generalized Hodge–Kodaira decomposition (see [46, Lemma 2.6]) implies that \(H^{s}={\mathcal {H}}\oplus \overline{{\mathrm {Ran}}(\partial +\partial ^{*})\circ A^{-1}}\) with \({\mathcal {H}}\) the harmonic space. By hypothesis \(\alpha \) belongs to \(\overline{{\mathrm {Ran}}(\partial +\partial ^{*})\circ A^{-1}}\). But \(A^{-1}\) is an isomorphism, hence \((\partial +\partial ^{*})\circ A^{-1}\) is \(\Gamma \)-Fredholm. From [21, Lemma 2.15], there exists \(r_{1}\in \text {M}(\Gamma )\) almost invertible and \(s_{1}\in H^{s}\ominus {\mathcal {H}}\) such that

$$\begin{aligned} r_{1}.\alpha = (\partial +\partial ^{*})\circ A^{-1} s_{1}=\partial \circ A^{-1} s_{1} \end{aligned}$$

for \(\alpha \in \mathrm {Ker}(\partial )=({\mathrm {Ran}}(\partial ^{*}))^{\perp }\). Generalized Hodge–Kodaira decomposition implies that \(s_{1}\in \overline{{\mathrm {Ran}}({\overline{\partial }}+{\overline{\partial }}^{*})\circ A^{-1}}\). As \(({\overline{\partial }}+{\overline{\partial }}^{*})\circ A^{-1}\) is \(\Gamma \)-Fredholm, there exists \(r_{2}\in \text {M}(\Gamma )\) almost invertible and \(s_{2}\in H^{s}\ominus {\mathcal {H}}\) such that \(r_{2}.s_{1}=({\overline{\partial }}+{\overline{\partial }}^{*})\circ A^{-1} s_{2}\), so that \(r_{2}r_{1} \alpha =\partial {\overline{\partial }}A^{-2} s_{2}+\partial {\overline{\partial }}^{*}A^{-2}s_{2}\). The form \(\partial {\overline{\partial }}^{*}A^{-2}s_{2}=r_{2}r_{1} \alpha -\partial {\overline{\partial }}A^{-2} s_{2}\) is \({\overline{\partial }}\)-closed and \({\overline{\partial }}^{*}\)-exact for the metric is Kähler hence \(\partial {\overline{\partial }}^{*}A^{-2}=-{\overline{\partial }}^{*}\partial A^{-2}\). It must vanishes, therefore \(r_{2}r_{1} \alpha =\partial {\overline{\partial }}A^{-2} s_{2}\) \(\square \)

1.3 Appendix 1.3: Examples

We prove that an infinite covering \({\mathbb {R}}^{n}/{\mathbb {Z}}^{n-r''}\rightarrow {\mathbb {R}}^{n}/{\mathbb {Z}}^{n}\) of a compact torus has vanishing \(l^{2}\)-cohomology and reprove in this context [21, Lemma 2.15] using Fourier transform. We apply then the analysis to complex tori. Laplace operator and Sobolev spaces will be defined as in Appendix 1.1 with respect to the flat Euclidean structure.

We first identify the action of the Von Neumann algebra on square integrable functions on the covering. Let \(n=r'+r''\). The group \({\mathbb {Z}}^{r''}\) acts on \({\mathbb {R}}^{r''}\) by translation in the usual way. The isomorphism \(l^{2}({\mathbb {Z}}^{r''})\rightarrow l^{2}({\mathbb {R}}^{r''}/{\mathbb {Z}}^{r''})\) identifies the Von Neumann algebra \(\text {M}({\mathbb {Z}}^{r''})\) with \(L^{\infty }({\mathbb {R}}^{r''}/{\mathbb {Z}}^{r''})\). Let \(\tau _{v''}\) be the translation operator on \(L^{2}({\mathbb {R}}^{r''}_{x''})\) defined by \(v''\in {\mathbb {Z}}^{r''}\). The Fourier transform \(f\mapsto {\mathcal {F}}{f}\) from \(L^{2}({\mathbb {R}}^{r''}_{x''})\) to \(L^{2}({\mathbb {R}}^{r''}_{\zeta ''})\) identifies \(\tau _{v''}\) to the multiplication operator by the function \(e^{iv''.\zeta ''}\). The action of \(r\in \text {M}({\mathbb {Z}}^{r''})\) on \(L^{2}({\mathbb {R}}^{r''}_{x''})\) is given by \({\mathcal {F}}{r.f}=r(e^{i\zeta ''_{1}},\ldots ,e^{i\zeta ''_{r''}}).{\mathcal {F}}{f}(\zeta '')\). Hence r is injective iff \(r(e^{i\zeta ''_{1}},\ldots ,e^{i\zeta ''_{r''}})\not =0\) for almost every \(\zeta ''\).

A constant elliptic system E of order one on \({\mathbb {R}}^{n}/{\mathbb {Z}}^{n}\) is a first-order operator \(E=\sum \limits _{k=1}^{n}E_{k}(-i\partial _{x_{k}})\) with constant matrix coefficients acting on the section of the trivial Hermitian bundle \({\mathbb {R}}^{n}/{\mathbb {Z}}^{n}\times {\mathbb {C}}^{N}\) such that \(\forall \zeta =(\zeta _{1},\ldots ,\zeta _{n})\in {\mathbb {R}}^{n}\setminus \{0\}\),

$$\begin{aligned} \hat{E}(\zeta ):=\sum _{k=1}^{n}E_{k}\zeta _{k}\in \mathrm {Gl}({\mathbb {C}}^{N}) . \end{aligned}$$

Let \(r',r''\) be positive integers and \(n=r'+r''\).

Lemma 6.3

Let \(({\mathbb {R}}^{r'}/{\mathbb {Z}}^{r'})\times {\mathbb {R}}^{r''}\rightarrow ({\mathbb {R}}^{r'}/{\mathbb {Z}}^{r'})\times ({\mathbb {R}}^{r''}/{\mathbb {Z}}^{r''})\simeq {\mathbb {R}}^{n}/{\mathbb {Z}}^{n}\) be a non-compact covering of a compact torus. Let E be a constant elliptic system of order one on \({\mathbb {R}}^{n}/{\mathbb {Z}}^{n}\). Then the kernel of E acting on \(H^{s}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\), \((s\in {\mathbb {R}})\), is trivial. Moreover, there exists \(r\in \text {M}({\mathbb {Z}}^{r''})\) injective such that for any section \(f\in H^{s}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\), r.f belongs to the range of E acting on \(H^{s+1}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\).

\(l^{2}\)-homology fits into this framework: cells define currents with compact support and under this duality, the exterior derivative is given by the boundary operator. An example is given by the covering \({\mathbb {R}}\rightarrow S^{1}\). The 0-cell \(\delta _{0}\) is in the closure of the range of the boundary operator \(\mathrm {b}\):

$$\begin{aligned} \delta _{0}-\frac{1}{n}\sum _{i=1}^{n}\delta _{i}=\mathrm {b} \left( \frac{1}{n}\sum _{i=1}^{n}1_{[0,i]} \right) \text { and } ||\frac{1}{n}\sum _{i=1}^{n}\delta _{i}||^{2}=\frac{1}{n^{2}}\sum _{i=1}^{n}||\delta _{i}||^{2}=\frac{1}{n}. \end{aligned}$$

Then \((\tau _{1}-\tau _{0})\delta _{0}=\delta _{1}-\delta _{0}=\mathrm {b} 1_{[0,1]}\) is already in the range of the boundary operator. Moreover, as current, \(\delta _{0}\in H^{-1-\epsilon }\) and \(1_{[0,1]}\in H^{-\epsilon }\) for any \(\epsilon >0\).

Proof

A section f which belongs to \(H^{s}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\) has a Fourier series decomposition

$$\begin{aligned} f(x',x'')=\sum _{n'\in {\mathbb {Z}}^{r'}}f_{n'}(x'')e^{in'.x'} \end{aligned}$$

such that \((n',x'')\rightarrow (1+||n'||^{2})^{\frac{s}{2}}f_{n'}(x'')\) belongs to \(L^{2}({\mathbb {Z}}^{n'}, H^{s}({\mathbb {R}}^{n''},{\mathbb {C}}^{N}))\). Let \(s\in {\mathbb {R}}\). The operator \((1+\Delta )^{\frac{s}{2}}\) commutes with E and gives an isomorphism from \(H^{s}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\) to \(L^{2}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N}\)). Hence it is enough to prove the lemma for \(s=0\).

The partial Fourier transform \(\mathcal {F}\) in the variable \(x''\) gives

$$\begin{aligned} {\mathcal {F}}{Ef}(x',\zeta '')= \sum _{n'\in {\mathbb {Z}}^{r'}}\hat{E}(n',\zeta '') {\mathcal {F}}{f_{n'}}(\zeta '')e^{in'.x'}. \end{aligned}$$

Assume f belongs to the Kernel of E. Then \({\mathcal {F}}{f_{n'}}\) is vanishing almost everywhere for \((n',\zeta '')\) is non-vanishing on \({\mathbb {R}}^{r''}_{\zeta ''}\setminus \{0\}\) hence \(\hat{E}(n',\zeta '')\) is injective there.

To invert E, one notices that \(\hat{E}(\zeta )^{-1}=||\zeta ||^{-1}\hat{E}(\frac{\zeta }{||\zeta ||})^{-1}\) and the set \(\{\hat{E}(\zeta )^{-1},\,||\zeta ||=1\}\) is a compact subset of \(\mathrm {Gl}({\mathbb {C}}^{N})\). Let C be a bound for the operator norm of its elements. A square integrable section \(f=\sum \limits _{n'\in {\mathbb {Z}}^{r}}f_{n'}e^{in'.x'}\) belongs to the range of E iff

$$\begin{aligned} (n',\zeta '')\mapsto & {} {\hat{E}\left( \frac{(n',\zeta '')}{||(n',\zeta '')||}\right) }^{-1}\frac{1}{||(n',\zeta '')||}{\mathcal {F}}{f_{n'}}(\zeta '') e^{in'.x'} \end{aligned}$$

is square integrable on \({\mathbb {Z}}^{r'}\times {\mathbb {R}}^{r''}\) iff, using the uniform bound C,

$$\begin{aligned} (n',\zeta '')\mapsto \frac{1}{||(n',\zeta '')||}{\mathcal {F}}{f_{n'}}(\zeta '') \end{aligned}$$

is square integrable. Let \(v''\in {\mathbb {Z}}^{r''}\setminus \{0\}\) be fixed. The bounded function \(\zeta ''\mapsto (e^{i v''.\zeta ''}-1)\) is non-vanishing almost everywhere and \(\zeta ''\mapsto \frac{(e^{i v''.\zeta ''}-1)}{||\zeta ''||}\) is bounded by \(||v''||\). Hence the operator \((\tau _{v''}-\mathrm{Id})\in \text {M}({\mathbb {Z}}^{r''})\) is injective on \(L^{2}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\) for

$$\begin{aligned} {\mathcal {F}}{(\tau _{v''}-\mathrm{Id}) f}(\zeta '')=(e^{i v''.\zeta ''}-1) {\mathcal {F}}{f}(x',\zeta ''). \end{aligned}$$

Then \((\tau _{v''}-\mathrm{Id}).f\) belongs to the range of E for

$$\begin{aligned} \sum _{n'\in {\mathbb {Z}}^{r}}\int _{{\mathbb {R}}^{r''}}||{\hat{E}(n',\zeta '')}^{-1}(e^{i n''.\zeta ''}-1) {\mathcal {F}}{f_{n'}}(\zeta '')||^{2}dV(\zeta '')\le & {} (C\max (2,||v''||) . ||f||)^{2} \end{aligned}$$

Elliptic regularity or above estimate prove that \(E^{-1}((\tau _{v''}-\mathrm{Id})f)\) belongs to \(H^{1}({\mathbb {R}}^{n}/{\mathbb {Z}}^{r'},{\mathbb {C}}^{N})\). \(\square \).

This lemma applies to a non-compact covering of a compact complex torus. Let \(\Lambda \) be a lattice of maximal rank in \({\mathbb {C}}^{n}\). Fix a linear isomorphism \(L:{\mathbb {R}}^{2n}\rightarrow {\mathbb {C}}^{n}\) such that \(L:{\mathbb {Z}}^{2n}\rightarrow \Lambda \) is an isomorphism. Let \(0\le r'\le 2n\) and consider the infinite covering \({\mathbb {C}}^{n}/\Lambda '\rightarrow {\mathbb {C}}^{n}/\Lambda \) which is the pullback of the covering \({\mathbb {R}}^{2n}/{\mathbb {Z}}^{r'}\rightarrow {\mathbb {R}}^{2n}/{\mathbb {Z}}^{2n}\) through the isomorphism L. The standard hermitian metric on \({\mathbb {C}}^{n}\) is Kählerian hence the operators \(\partial +\partial ^{*}\) and \({\overline{\partial }}+{\overline{\partial }}^{*}\) anticommute with square \((\partial +\partial ^{*})^{2}=({\overline{\partial }}+{\overline{\partial }}^{*})^{2}=\frac{1}{2}\Delta \) where \(\Delta \) is the Euclidean Laplace operator.

The orthonormal flat basis of the bundle \(\Lambda T^{*}{\mathbb {C}}^{n}\) given by \(\{\epsilon _{I,J}dZ^{I}\wedge d\bar{Z}^{J}\}_{I,J}\) (the \(\epsilon _{I,J}\) are suitable normalization constants) and linear coordinates \((x_{1},\ldots ,x_{2n})\) on \({\mathbb {R}}^{2n}\) allow to reduce the analysis of the operators \(\partial +\partial ^{*}\), \({\overline{\partial }}+{\overline{\partial }}^{*}\) (and \(d+d^{*}\)) to anticommuting first-order constant elliptic systems on the trivial hermitian vector bundle \(\Lambda ({\mathbb {C}}^{n})^{*}\) over \({\mathbb {R}}^{2n}/{\mathbb {Z}}^{r}\). For any square integrable form f on \({\mathbb {C}}^{n}/\Lambda '\), there exists \(r\in \text {M}(\Lambda /\Lambda ')\) and a square integrable form g such that \(r.f=(\partial +\partial ^{*})({\overline{\partial }}+{\overline{\partial }}^{*}) (g)\). As we saw in the proof of the \(\partial {\overline{\partial }}\)-lemma, the Kähler condition and the hypothesis that f is a closed (pq)-form imply that \((\partial +\partial ^{*})({\overline{\partial }}+{\overline{\partial }}^{*})(g)=\partial {\overline{\partial }}g\).

This section contrasts with results in [32] where it is proved that the \(\partial {\overline{\partial }}\)-lemma for a d-exact (pq)-form (no growth condition) does not hold for some (wild) Toroidal group \({\mathbb {C}}^{n}/\Lambda '\).

Appendix 2

In [21], we put a mixed Hodge structure on the \(l^{2}\)-cohomology groups of infinite covering using the notion of a quotient category. This was needed to ensure degeneracy of the weight and the Hodge spectral sequences. In this section, we show that the quotient categories involved are equivalent to the category of modules over a ring of operators.

More precisely the functor of reduction with respect to a torsion theory is isomorphic to the functor of tensorization by a localization of a ring. This was proved by Gabriel [24, Chap. V, Sect. 2].

This gives the analogy of tensorization by \({\mathbb {Q}}\) which kills the torsion in \({\mathbb {Z}}\)-modules. The ring used is the left Von Neumann algebra \(\text {M}(\Gamma )\) of the Galois group \(\Gamma \) of the covering \(p:X\rightarrow Y\). Its ring of quotients will be the algebra \({\mathcal {U}}(\Gamma )\) of operators affiliated to it, that is, densely defined operators on \(l^{2}(\Gamma )\) which are invariant with respect to the right action of \(\Gamma \) on \(l^{2}(\Gamma )\). An element \(u\in {\mathcal {U}}(\Gamma )\) may be written as \(u=a. i^{-1}\) with \(a,i\in \text {M}(\Gamma )\), i is injective with dense range and \(i^{-1}\) is its densely defined inverse (see [36, Chap. XVI] or [35, p. 322]).

Interpretation of statements about elements in \(H\otimes _{\text {M}(\Gamma )}{\mathcal {U}}(\Gamma )\) seems more commonly used than in \(H \mod \tau _{{\mathcal {U}}(g)}\), an object of the quotient category, where even the notion of elements is not defined. The isomorphism of functors granted, statements in [21, Sects. 4 and 5] may be restated in the category of \({\mathcal {U}}(\Gamma )\)-modules at least when \(\tau =\tau _{{\mathcal {U}}(\Gamma )}\). As examples, we refer to section 4.3 of the present article and to the following classical corollary of mixed Hodge theory.

1.1 Appendix 2.1: Notations

Let \({\text {Mod}}(\text {M}(\Gamma ))\) be the category of \(\text {M}(\Gamma )\)-modules and \({\text {Mod}}({\mathcal {U}}(\Gamma ))\) be the category of \({\mathcal {U}}(\Gamma )\)-modules.

Following [36, Chap. XVI] and [35, p. 327], we recall that \(m\in \text {M}(\Gamma )\) is almost invertible iff it is injective with dense range. But \(\text {M}(\Gamma )\) is finite, hence it is enough for m to be injective. Therefore the set S of almost invertible operator is a multiplicative subset of the ring \(\text {M}(\Gamma )\). From [35, Def. 8.14, Th. 8.22], the Ore localization \(\text {M}(\Gamma )S^{-1}\) of \(\text {M}(\Gamma )\) with respect to this multiplicative system is isomorphic to \({\mathcal {U}}(\Gamma )\), the ring of affiliated operator to \( \text {M}(\Gamma )\) (densely defined operator which commute with \( \text {M}(\Gamma )'\)).

Following [21, 2.5], [35, 8.4], [24, Chap. 5, Sect. 2], [51], we recall that

$$\begin{aligned} {\mathcal {T}}_{{\mathcal {U}}(\Gamma )}=\{M\in {\text {Mod}}(\text {M}(\Gamma )) \text { s.t. } \forall m\in M:\, \exists s\in S \text { s.t. } s.m=0\} \end{aligned}$$

defines a torsion theory \(\tau _{{\mathcal {U}}(\Gamma )}\) on \({\text {Mod}}(\text {M}(\Gamma ))\).

1.2 Appendix 2.2: Isomorphism of Functors and Applications

Lemma 7.1

  1. (1)

    \( \text {M}(\Gamma )\rightarrow {\mathcal {U}}(\Gamma )\) is a flat rings extension.

  2. (2)

    The localization functor \({\text {Mod}}( \text {M}(\Gamma ))\rightarrow {\text {Mod}}( \text {M}(\Gamma ))_{\tau _{{\mathcal {U}}(\Gamma )}}\) is isomorphic to the functor of scalars extension

    $$\begin{aligned}&{\text {Mod}}( \text {M}(\Gamma )) \rightarrow {\text {Mod}}({\mathcal {U}}(\Gamma ))\\&\quad M\mapsto M\otimes _{ \text {M}(\Gamma )}{\mathcal {U}}(\Gamma )\text { and } f\mapsto f\otimes id_{{\mathcal {U}}(\Gamma )}. \end{aligned}$$

Proof

  1. (1)

    see [35, Th. 8.22, p. 327].

  2. (2)

    From [35, Th. 8.22(1), p. 327], the multiplicative set S satisfies the Ore condition. Hence Proposition 5 of [24, Chap. 5, p. 415] applies. It contains the statement (2).\(\square \)

Note that by definition, if \(m\in M \) and \(s\in \text {M}(\Gamma ) \), almost invertible, satisfy \( s.m=0\), then in \(M\otimes {\mathcal {U}}(\Gamma )\),

$$\begin{aligned} m\otimes 1= s.m\otimes s^{-1}=0\otimes s^{-1}=0. \end{aligned}$$

From the lemma, we deduce the localization with respect to \({\mathcal {T}}_{{\mathcal {U}}(\Gamma )}\) of a spectral sequence in \({\text {Mod}}( \text {M}(\Gamma ))\) is the tensor product by \({\mathcal {U}}(\Gamma )\) of the spectral sequence. As an example, we state the following classical consequence of the \(E_{1}\)-degeneration of the Hodge spectral sequence (see [19, Cor. 3.2.14]).

Corollary 7.2

Let D be a normal crossing divisor in Y. There exists a morphism

$$\begin{aligned} H^{0}(Y,{ p_{*(2)} }\Omega ^{.}_{Y}(log D))\rightarrow H^{.}(Y\setminus D,{ p_{*(2)} }{\mathbb {C}}) \end{aligned}$$

which is moreover injective.

Proof

(see the notations in [21, Th. 4.6(iv)]). The \(E_{1}\) degeneration of the spectral sequence of the filtered complex \((R\Gamma ({ p_{*(2)} }\Omega ^{.}_{Y}(log D)),F)\otimes _{ \text {M}(\Gamma )}{\mathcal {U}}(\Gamma ) \) and the edge homomorphism give

$$\begin{aligned} E^{i,0}_{\infty }(F)&\overset{\simeq }{\rightarrow }&E^{i,0}_{1}(F). \end{aligned}$$
(22)

The first term is

$$\begin{aligned} \mathrm {Ker}(d: H^{0}(Y,{ p_{*(2)} }\Omega ^{i}_{Y}(log D))\rightarrow H^{0}(Y,{ p_{*(2)} }\Omega ^{i+1}_{X}(log D))) \otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma ) \end{aligned}$$
(23)

while the second is

$$\begin{aligned} H^{0}(Y,{ p_{*(2)} }\Omega ^{i}_{X}(log D))\otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma ). \end{aligned}$$
(24)

Let \(\alpha \in H^{0}(Y,{ p_{*(2)} }\Omega ^{i}_{Y}(log D))\) then \(d(\alpha \otimes 1_{{\mathcal {U}}(\Gamma )})=0\), hence there exists \(r\in \text {M}(\Gamma )\) injective such that \(r d\alpha =0\). Lemma 2.8 implies that \(d\alpha =0\).

Degeneracy at \(E_{1}\) of the spectral sequence also implies that the map

$$\begin{aligned}&{\mathbb {H}}^{i}(Y,F^{i}({ p_{*(2)} }\Omega ^{.}_{Y}(log ,)d))\otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma ) \nonumber \\&\quad \rightarrow {\mathbb {H}}^{i}(Y,({ p_{*(2)} }\Omega ^{.}_{Y}(log ,)d))\otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma ) \end{aligned}$$
(25)

is injective hence

$$\begin{aligned} H^{0}(Y,{ p_{*(2)} }\Omega ^{i}_{Y}(log D))\otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma )\rightarrow & {} H^{i}(Y\setminus D,{ p_{*(2)} }{\mathbb {C}})\otimes _{ \text {M}(\Gamma )} {\mathcal {U}}(\Gamma ) \end{aligned}$$
(26)

is injective. We infer as above that \(H^{0}(Y,{ p_{*(2)} }\Omega ^{i}_{Y}(log D))\rightarrow H^{0}(Y\setminus D,{ p_{*(2)} }{\mathbb {C}})\) is injective. \(\square \)

Remark 5.9

  1. (i)

    The monomorphism of differential sheaves \((\Omega _{Y}^{.},d)\!\rightarrow \! (\Omega ^{.}_{Y}(log D),d)\) is an isomorphism on \(Y\setminus D\).

  2. (ii)

    The differential in the logarithmic complex does not coincide with the differential in the sense of currents: let \(j: Y\setminus D\rightarrow Y\) be the canonical immersion and [a] be the current defined by a form \(a\in L^{1}_{loc}\). Let \(\alpha \) be a section of \(\,\,\Omega ^{.}_{Y}(log D)\) then \([d\alpha ]= i_{*} d i^{*}[\alpha ]\).

  3. (iii)

    Let \(\mathcal {A}^{.}\) be the sheaf of smooth differential forms on Y. An element of \(H^{0}(Y\setminus D,{ p_{*(2)} }\mathcal {A}^{.})\) is a form on \(X\setminus p^{-1}(D)\) which is square integrable on \(p^{-1}(K)\) for any compact set \(K\subset Y\setminus D\).

Corollary 1 is equivalently stated as:

Any holomorphic section \(\alpha \) of \({ p_{*(2)} }\Omega ^{.}_{Y}(log D)\) over Y defines a closed form \(\alpha _{|Y\setminus D}\) on

\(X\setminus p^{-1}(D)\). Moreover if \(\alpha _{|Y\setminus D}=du\) with \(u\in H^{0}(Y\setminus D,{ p_{*(2)} }\mathcal {A}^{.})\), then \(\alpha =0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingoyan, P. A Factorization Theorem for Curves with Vanishing Self-Intersection. J Geom Anal 28, 1091–1121 (2018). https://doi.org/10.1007/s12220-017-9855-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9855-7

Keywords

Mathematics Subject Classification

Navigation